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SUMMARY

A major obstacle in the application of cell-based
therapies for the treatment of neuromuscular disor-
ders is obtaining the appropriate number of stem/
progenitor cells to produce effective engraftment.
The use of embryonic stem (ES) or induced pluripo-
tent stem (iPS) cells could overcome this hurdle.
However, to date, derivation of engraftable skeletal
muscle precursors that can restore muscle function
from human pluripotent cells has not been achieved.
Here we applied conditional expression of PAX7 in
human ES/iPS cells to successfully derive large
quantities of myogenic precursors, which, upon
transplantation into dystrophic muscle, are able to
engraft efficiently, producing abundant human-
derived DYSTROPHIN-positive myofibers that
exhibit superior strength. Importantly, transplanted
cells also seed themuscle satellite cell compartment,
and engraftment is present over 11 months post-
transplant. This study provides the proof of principle
for the derivation of functional skeletal myogenic
progenitors from human ES/iPS cells and highlights
their potential for future therapeutic application in
muscular dystrophies.

INTRODUCTION

Muscle wasting affects millions of individuals worldwide and is

caused by a variety of conditions, including cachexia, sarcope-

nia, and muscular dystrophies (MDs). The latter comprises

more than 30 genetically distinct disorders that culminate in

paralysis and, in many instances, cardiopulmonary complica-

tions (Emery, 2002). Current treatment options are only palliative,

and thus far there is no cure for any type of MD. Therapeutic

strategies that focus on the replacement of the diseased muscle

tissue with stem cells that can give rise to healthy myofibers, as

well as self-renew, are particularly attractive. This strategy has

been used in the hematopoietic system for the past 40 years
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with great success. A major caveat with muscle tissue is the

impossibility of obtaining enough skeletal muscle stem cells

(satellite cells) without causing severe and permanent damage

to the muscle of the donor, in contrast to hematopoietic stem

cells (HSCs), which can be harvested from mobilized peripheral

blood or marrow with minimal harm to the donor. Small muscle

biopsies allow for the ex vivo expansion of satellite cell progeny;

however, as observed for HSCs (Guenechea et al., 1999), ex vivo

expansion of myoblasts from satellite cells results in loss of

engraftment ability (Montarras et al., 2005). Consistently, early

clinical trials involving the transplantation of ex-vivo-expanded

myoblasts failed to improve strength in patients with Duchenne’s

MD (Mendell et al., 1995; Vilquin, 2005). Therefore, alternate

sources of early skeletal muscle progenitors are required for

the feasibility of a stem cell therapy approach for MD.

One of the major advantages of pluripotent stem cells is the

prospect of generating large quantities of specific cell popula-

tions for regenerative purposes. In particular, with the recent

breakthrough of reprogramming somatic cells (Park et al.,

2008; Takahashi et al., 2007; Yu et al., 2007), ethical concerns

associated with human ES cells are eliminated, and the possi-

bility of generating patient-specific iPS cells for autologous ther-

apies is enabled. Whereas safety issues still need to be carefully

addressed before these cells can be used in the clinical setting,

a critical prerequisite for a potential therapeutic application is the

generation of abundant engraftable tissue-specific cell prepara-

tions. Although the use of mouse iPS-derived cells to correct

a disease phenotype has been documented for several models

of disease through derivation of hematopoietic (Hanna et al.,

2007), endothelial (Xu et al., 2009), neural (Wernig et al., 2008),

pancreatic (Alipio et al., 2010), liver (Espejel et al., 2010), and

myogenic (Darabi et al., 2011a; Mizuno et al., 2010) precursor

cells, the human iPS field lags far behind in this regard. To

date, there is only one study documenting functional improve-

ment from human iPS cells, using a rat model of Parkinson’s

disease (Hargus et al., 2010). Thus, there is clearly a huge gap

between transplantation studies involving mouse and human

pluripotent stem cells. Proof-of-principle studies using human

iPS cells are required in order to begin seriously considering

potential therapeutic applications of these cells.

Here we describe the efficient derivation of a proliferating pop-

ulation of human skeletal myogenic progenitors from both ES
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Figure 1. Myogenic Induction of Human ES/

iPS Cells by PAX7

(A) Schematic of differentiation protocol with

representative morphological aspects of iPAX7

H9: in the undifferentiated state as ES cell colonies

in mTeSR medium (I), and in the EB stage (II). At

day 7 of differentiation, EBs are collected and

plated on a gelatinized flask to grow as a mono-

layer (III). PAX7 induction is initiated at day 10 of

differentiation by adding dox to the myogenic

medium. GFP+ (PAX7+) cells emerge in these

cultures and begin to proliferate. GFP+ cells are

purified by FACS (IV). Representative FACS profile

shows PAX7 (GFP) expression after 4 days of dox

induction in H9 differentiating ES cells. The

percentage indicated represents the fraction of

GFP+ cells (IV). PAX7+ myogenic progenitors are

expanded in myogenic induction medium sup-

plemented with dox and human bFGF (V). Scale

bars represent 100 mm.

(B) Growth curve of PAX7-induced ES- and iPS-

derived myogenic progenitors during in vitro

expansion. Data represent mean ± SE of four

independent experiments.

(C–E) Immunostaining of PAX7-induced human

ES-derived (C) and iPS-derived (D and E)

myogenic cells for PAX7, MYOGENIN, andMHC in

proliferation (top) and differentiation (bottom)

conditions. With PAX7 induction under prolifera-

tion conditions, most cells express PAX7 and only

a few express markers of terminal differentiation

(top panels), whereas under differentiation condi-

tions (and dox withdrawal), almost all of the cells

become positive for MYOGENIN and MHC, form-

ing multinucleated myotubes (bottom panels).

Cells were costained with DAPI (blue). Numbers on

each panel represent the percentage of cells ex-

pressing PAX7, MYOGENIN, or MHC. Data are

mean ± SE. For each condition, four slides were

used for quantification. Scale bars represent

100 mm. See also Figure S1.
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and iPS cells, which, upon transplantation into dystrophin-defi-

cient mice, promote extensive and long-term regeneration that

is accompanied by functional improvement.

RESULTS

PAX7 Induces the Myogenic Program in Differentiating
Human ES and iPS Cells
To assess whether PAX7, a paired-box transcription factor well

known for its role in the maintenance of the adult satellite cell

compartment (Oustanina et al., 2004; Seale et al., 2000), can

efficiently induce the myogenic program in human ES- and

iPS-derived embryoid bodies, as observed in mouse cultures

(Darabi et al., 2011a; Darabi et al., 2011b), we modified the
Cell Stem Cell 10, 610
human H9 ES cell line and two well-char-

acterized human iPS cell lines,

IPRN13.13 and IPRN14.57 (see Figures

S1A–S1F available online), generated

from fibroblasts from normal donors,

with a doxycycline-inducible lentiviral
vector encoding PAX7 (iPAX7). Expression of the transgene

was detected by incorporating an ires-GFP reporter down-

stream of the PAX7 gene (Figure S1G). Further confirmation of

PAX7 induction in these cells was provided by immunofluores-

cence analyses, which showed coexpression of PAX7 and

GFP upon doxycycline (dox) induction (Figure S1H). Genetic

modification did not alter the morphology of the pluripotent cells

or their ability to differentiate into embryoid bodies (EBs)

(Figure 1A).

In embryogenesis, PAX7 and its homolog PAX3 act to confer

myogenic fate within paraxial mesoderm. We therefore differen-

tiated iPAX7 human (h) ES and iPS cells for 7 days as EBs fol-

lowed by 3 days in monolayer before inducing PAX7 with dox

(Figure 1A). This time point is well into the peak of mesoderm
–619, May 4, 2012 ª2012 Elsevier Inc. 611
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Figure 2. Phenotypic Profile and Regenera-

tive Potential of Human ES/iPS-Derived

Myogenic Cells

(A) Representative FACS profile of PAX7-induced

humanES- and iPS-derived proliferatingmyogenic

progenitors. Histogram plots show isotype control

staining profile (gray line) versus specific antibody

staining profile (red line). Percentages represent

the fraction of cells that express a given surface

antigen. See also Figure S2.

(B–F) Transplantation ofmyogenic progenitors into

cardiotoxin-injured NSG mice. (B) PBS-injected

control muscles show no staining for human-

specific DYSTROPHIN (right, in red), but, as ex-

pected, do show uniform expression of mouse

dystrophin (left, in green), as evidenced by the use

of a pandystrophin antibody. (C–E) Engraftment of

proliferating myogenic progenitors obtained from

PAX7-induced human ES-derived (C) and iPS-

derived (D and E) cells in TA muscles of NSG (n = 4

for each cell line) 2 months after intramuscular

transplantation. Immunofluorescence stainingwith

anti-human (in red) and anti-pandystrophin (in

green) antibodies reveals presence of donor-

derived myofibers expressing human DYSTRO-

PHIN in recipient muscles (in red). Scale bars

represent 100 mm. (F) Quantification of human

DYSTROPHIN+ fibers in engrafted muscles

shows similar engraftment of human ES- versus

iPS-derived myogenic progenitors. For this, the

total number of human DYSTROPHIN+ fibers in

cross-sections of TA muscles (sections spanned

entire muscles) was counted. Data are shown as

mean ± SE.
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generation, as indicated by Brachyury expression (Figure S1I).

Following 4 days of induction, PAX7+GFP+ cells were purified

by fluorescence-activated cell sorting (FACS) and expanded in

secondary monolayer culture in proliferation medium containing

dox and bFGF (Figure 1A and Figure S1J). Both ES- and iPS-

derived myogenic progenitors demonstrated notable expansion

potential, averaging 86-fold by week 2 (Figure 1B), with a total of

six to seven doublings during this period. Under these prolifera-

tion conditions, iPAX7 hES and hiPS cells expressed PAX7

abundantly (Figures 1C–1E and Figures S1K and S1L).

MYOGENIN and MYOSIN HEAVY CHAIN (MHC), markers of

terminal muscle differentiation, were barely detectable (Figures

1C–1E). This profile changed when iPAX7 hES and hiPS cells

were subjected to differentiation (5% horse serum and with-

drawal of dox and bFGF; differentiation medium). In these

culture conditions for 2 weeks, human myogenic progenitors

differentiated into multinucleated myotubes, with abundant

expression of MYOGENIN and MHC, while rare cells expressed

PAX7 (Figures 1C–1E). These results were confirmed by gene
612 Cell Stem Cell 10, 610–619, May 4, 2012 ª2012 Elsevier Inc.
expression analyses, which showed

high levels of PAX7 expression solely

under proliferation conditions (in the

presence of dox) (Figure S1M) and upre-

gulation of MYOD and late skeletal

muscle-specific markers, MYOGENIN,

DYSTROPHIN, and MHC, when these
myogenic progenitors had undergone final maturation

(Figure S1M).

Human ES- and iPS-Derived Myogenic Progenitors
Display Similar Surface Marker Profile
We characterized surface marker expression of these

myogenic progenitors by FACS using a panel of antibodies.

Our results show a remarkable similarity between hES- (Fig-

ure 2A and Figure S2A) and hiPS-derived myogenic progenitors

(Figure 2A and Figures S2B and S2C). Cells in each preparation

showed homogenous expression of CD56, CD29, CD44,

M-CADHERIN, and a7-INTEGRIN. Although most of these

markers are associated with murine satellite cells and early

myogenic progenitors (Cornelison and Wold, 1997; Sacco

et al., 2008; Sherwood et al., 2004), the human satellite cell

has not yet been defined by flow cytometry. Only CD56 has

been considered to be a reliable marker of human satellite cells

(Péault et al., 2007). These cells were also found to express

high levels of CD63, CD146, CD105, CD90, and CD13; the
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Figure 3. Efficient Engraftment and Functional Recovery after Transplantation of Human ES/iPS-Derived Myogenic Progenitors into Dystro-

phic Mice

(A) While no staining for human LAMIN AC or DYSTROPHIN is detected in PBS-injected control TA muscles of NSG-mdx4Cv mice (top), abundant expression for

human LAMIN AC (in green) and DYSTROPHIN (in red) is observed (bottom) in dystrophic muscles treated with human ES/iPS-derived myogenic progenitors

1 month after the transplantation (n = 5 for H9, n = 6 for IPRN13.13, and n = 7 for IPRN 14.47). Note that nuclear LAMIN AC staining occurs predominantly within

human DYSTROPHIN+ myofibers. Scale bars represent 100 mm. See also Figure S3.
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last three are antigens known to be present in mesenchymal

stem cells (Pittenger and Martin, 2004). CD34 labeled a discrete

subfraction of these cells. Other screened antigens, including

CD45, CD33, KDR, and CD31, were undetectable in these

myogenic progenitor populations (Figure S2), indicating the

absence of hematopoietic and endothelial cells. The adhesion

molecules CXCR4 and CD106 were also not detected. We

examined MAJOR HISTOCOMPATIBILITY COMPLEX (MHC)

expression because the lack of MHC class I expression on

other embryonic and ES-derived cells has limited engraftability,

even in immunodeficient mice, due to NK cell-mediated

responses (Rideout et al., 2002; Tabayoyong et al., 2009).

This analysis revealed that, regardless of ES or iPS origin,

proliferating myogenic progenitors express MHC class I mole-

cules (Figure S2). This pattern is beneficial from the perspective

of avoiding an NK-mediated lack of self-MHC response but

indicates the importance of HLA matching.

In Vivo Regenerative Potential of HumanES/iPS-Derived
Myogenic Progenitors
Next we examined the in vivo skeletal muscle regenerative

potential of iPAX7 hES- and hiPS-derived myogenic progenitors

by transplanting these cells directly into the tibialis anterior (TA)

muscles of NOD/SCID gamma-c (NSG) mice, an immune-defi-

cient strain commonly used as a recipient of human hematopoi-

etic cells. The gamma-c mutation (IL2Rg) ablates NK cells,

rendering NSG mice unable to reject human cells due to lack

of self-MHC presentation, resulting in better hematopoietic

engraftment than in mice bearing the NOD/SCID mutation alone

(Shultz et al., 2005). NSG mice were injured with cardiotoxin

(CTX) 24 hr prior to cell transplantation. The contralateral TA

muscle, which served as a control, was also preinjured with

CTX but injected only with PBS. Two months after transplanta-

tion, muscle sections were harvested and evaluated for engraft-

ment by immunostaining with both pandystrophin and human-

specific DYSTROPHIN antibodies. No expression of human

DYSTROPHIN could be detected in PBS-injected control

muscles (Figure 2B); staining was only observed with a pandy-

strophin antibody (Figure 2B). On the other hand, muscles that

had been treated with iPAX7 hES- (Figure 2C) and hiPS-derived

(Figures 2D and 2E) myogenic progenitors demonstrated

engraftment of human-derived myofibers, as evidenced by the

clear expression of human-specific DYSTROPHIN in recipient

muscles (Figures 2C–2E). We did not observe major differences

in terms of engraftment between ES- and iPS-derived myogenic

progenitors (Figure 2F). No tumor formation was observed in

transplanted mice, even in a long-term (46 weeks) cohort.
(B) Quantification of human DYSTROPHIN+ fibers in NSG-mdx4Cv engrafted mice

progenitors. For this, the total number of human DYSTROPHIN+ fibers in cross-se

shown as mean ± SE.

(C) Representative example of force tracings in TAmuscles of nontreated, noninjur

NSG-mdx4Cv mice that had been injected with PBS (control, red line) or human E

(D and E) Effect of iPAX7 human ES/iPS-derivedmyogenic cell transplantation on

nontreated, noninjured NSG (purple) and NSG-mdx4Cv (brown) mice are shown f

(F and G) Weight and CSA of control and transplanted muscles, respectively. Valu

shown for reference. See also Figure S4. Data are shown as mean ± SE.

(H) Fatigue index: time for force to decline to 30%of itsmaximal value shows no sig

as mean ± SE. *p < 0.05, **p < 0.01 compared to its PBS control. +p < 0.05, +++p
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Functional Improvement in Dystrophic Mice
To determine the regenerative potential of these myogenic

progenitors in the context of muscular dystrophy, we trans-

planted them into mdx mice engineered to lack B, T, and NK

cells. These mice were generated by crossing mice carrying

the mdx4Cv mutation, an ENU-induced stop codon in exon 53

(Im et al., 1996) with very low reversion frequency (Danko

et al., 1992), to NSG mice. Recombinant X chromosomes

bearing bothmdx4Cv and IL2RgD were brought to homozygosity

with the NOD/SCID mutation, and the stock was maintained by

sibmating. The genetic background is thus mixed-inbred,

distinct from either C57BL/6Rox (of mdx4Cv) or NOD/ShiLtJ (of

NSG). These NSG-mdx4Cv mice, similarly to conventional mdx

mice (Coulton et al., 1992; Durbeej and Campbell, 2002), lack

dystrophin (Figure S3) and are characterized by extensive regen-

eration, as evidenced by the presence of centrally nucleated

myofibers (Figure S3).

Intramuscular transplantation of TA muscles with ES- or

iPS-derived myogenic progenitors resulted in considerable

engraftment, as clearly shown by the large number of myofib-

ers expressing human DYSTROPHIN (Figure 3A), whereas

PBS-injected muscles lacked DYSTROPHIN (Figure 3A). This

engraftment was confirmed by the use of a second human-

specific antibody, LAMIN AC (Figure 3A). Human nuclei were

exclusive to cell-transplanted muscle and mainly found within

human DYSTROPHIN+ fibers (Figure 3A). We observed

comparable engraftment between iPAX7 hES- versus hiPS-

derived myogenic cells (Figure 3B), suggesting similar regener-

ative potential between ES- and iPS-derived myogenic

progenitors. As controls, we transplanted dermal fibroblasts

and myoblasts using the same cell number into the TA

muscles of NSG-mdx4Cv mice. No engraftment was detected

following injection of fibroblasts (Figure S4A), whereas

DYSTROPHIN+ myofibers could be observed in myoblast-

transplanted mice (Figure S4A), although at a much lower level

(Figure S4B) than ES- and iPS-derived myogenic progenitors

using our protocol (p < 0.001).

Next we investigated whether muscle contractile parameters

were altered following transplantation. Similarly to conventional

mdx mice (Darabi et al., 2008), TA muscles from immunodefi-

cient dystrophic mice were weak and hypertrophic, as shown

in untreated or PBS-injected controls (Figures 3C–3G). On the

other hand, dystrophic muscles that had been transplanted

with human ES- and iPS-derived myogenic progenitors demon-

strated significant functional improvement, as demonstrated by

superior isometric tetanic force (Figure 3C), increased absolute

force (Figure 3D), and specific force (Figure 3E), when compared
shows comparable engraftment of human ES- versus iPS-derived myogenic

ctions of TA muscles (sections spanned entire muscles) was counted. Data are

ed NSG (purple line) and NSG-mdx4Cv (brown line) mice, as well as CTX-injured

S/iPS-derived myogenic progenitors (green line).

absolute and specific (sF0: F0 normalized to CSA) force, respectively. Values for

or reference. Data are shown as mean ± SE.

es for nontreated, noninjured NSG (purple) and NSG-mdx4Cv (brown) mice are

nificant recoverywith cell treatment compared to PBS control. Data are shown

< 0.001 compared to NSG-mdx4Cv.
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Figure 4. Satellite Cell Engraftment by Human ES/iPS-Derived Myogenic Cells

(A andB) Representative images show staining for satellite cells inmuscle sections fromNSG-mdx4Cvmice that had been transplantedwith H9 human ES-derived

myogenic progenitors. Images are shown at lower (A) and higher (B) magnification. Immunostaining shows the presence of human LAMIN AC+ (in green) cells in

engrafted regions. Arrows shows the presence of human-derived satellite cells in engrafted muscles, as evidenced by the presence of PAX7+ (in red) LAMIN AC+

(in green) double-positive cells under the basal lamina. Scale bars represent 100 mm.

(C and D) Similar satellite cell engraftment was observed upon transplantation of human iPS-derived myogenic progenitors, IPRN 13.13 (C) and IPRN 14.57 (D).

Scale bars represent 100 mm.
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to their respective contralateral PBS-injected TAmuscle. Weight

and cross-sectional area (CSA) parameters remained

unchanged (Figures 3F and 3G). No changes were observed

when transplanted muscle was subjected to fatigue test (Fig-

ure 3H), suggesting that levels of engraftment were not sufficient

to restore this parameter. Meanwhile, transplantation of fibro-

blasts or myoblasts did not result in improvement of any of these

functional parameters (Figures S4E–S4G).

Engraftment of the Satellite Cell Compartment
Finally, we investigated whether ES- and iPS-derived myogenic

progenitors have the ability to seed the satellite cell compart-

ment following their transplantation into NSG-mdx4Cv. We per-

formed these analyses by staining muscle cryosections with

Pax7 (satellite cell marker), human LAMIN AC (specific antibody

to track human cells), Laminin (to identify position within the

sarcolemma), and DAPI. The majority of human nuclei were

PAX7� and were within human DYSTROPHIN+ myofibers. This

is expected, because the majority of transplanted human

myogenic progenitors differentiate into myofibers. However,

we also detected a significant number of PAX7+ human LAMIN

AC+ cells, representing donor-derived satellite cells. These

results were quantified and are shown in Figure 4E. The data

clearly show that human ES- and iPS-derived myogenic progen-

itors are able to seed the satellite cell compartment (Figures 4A–

4D). As expected, because muscles were not previously irradi-

ated, the majority of the satellite cell pool was of recipient origin,

with only a small fraction being donor derived (Figure 4E).

To determine whether the engraftment of ES- and iPS-derived

myogenic progenitors was durable, we assessed the presence

of human DYSTROPHIN+ myofibers at 46 weeks after transplan-

tation into NSG mice. Immunostaining of this long-term experi-

mental cohort revealed significant engraftment in muscles of

NSG mice (n = 9) that had been transplanted with human

ES/iPS-derived skeletal myogenic progenitors (11 months post-

transplantation) (Figure 4F and Figure S4H). Quantification of

human DYSTROPHIN+ myofibers demonstrated that the

engraftment level at 46 weeks was about 60%–80% (Figure S4I)

of the levels at 8 weeks (Figure 2F). This sustained long-term

engraftment data is remarkable, because, to our knowledge,

no study has followed engraftment for such a long period with

human myogenic cells.

DISCUSSION

There has been increasing enthusiasm about the possibility of

applying iPS technology to generate autologous cells for thera-

peutic purposes. Some of the advantages associated with these

pluripotent stem cells include (1) the absence of ethical

concerns, because cells are derived from adult tissue, (2) the

potential for an off-the-shelf supply of HLA-matched or
(E) Quantification of PAX7+LAMIN AC+ and Pax7+LAMIN AC� cells in transplan

respectively. The total number of PAX7+LAMIN AC+ and Pax7+LAMIN AC� cells in

Data are shown as mean ± SE. Left panels show absolute numbers; right panels in

nuclei, as well as percentage per donor fiber.

(F) Assessment of long-term engraftment at 46 weeks after transplantation in NSG

reveals the presence of donor-derived myofibers expressing human DYSTROPH

Figure S4.
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patient-specific stem cell preparations, (3) the possibility of cor-

recting genetic defects by homologous recombination, and

(4) the possibility of immunosuppression being dispensable, in

the case of autologous cell transplantations. Although significant

progress has been made in terms of generating integration-free

iPS cells through the use of safer transient vectors (Kaji et al.,

2009; Okita et al., 2008; Stadtfeld et al., 2008; Woltjen et al.,

2009; Yu et al., 2009), transduction of recombinant proteins

(Kim et al., 2009; Zhou et al., 2009), or the use of synthetic modi-

fied mRNA (Warren et al., 2010), proof-of-principle studies

demonstrating functional recovery following transplantation of

human iPS-derived stem cell preparations into animal models

of disease are still lacking. Although one study has previously

documented evidence of skeletal muscle differentiation after

intramuscular transplantation of human ES cells (Barberi et al.,

2007), this was very limited, and only a few myogenic cells

were observed in vitro and in vivo. Moreover, these were not per-

formed in a dystrophic mousemodel, making it difficult to assess

therapeutic relevance.

In this study we demonstrate the feasibility of generating large

quantities of human ES- and iPS-derived early skeletal myogenic

progenitors that are endowed with the ability to promote regen-

eration in vivo, not only restoring DYSTROPHIN expression in an

immunodeficient model of Duchenne muscular dystrophy but

also improving the force generation of engrafted muscles. We

also show that PAX7-induced human ES- and iPS-derived

myogenic progenitors contribute to the satellite cell pool and

that engraftment is durable, being sustained for around half the

life span of the animal, andmost likely longer. It will be interesting

to determine whether engraftment levels can be increased with

different delivery or conditioning strategies. Because irradiation

was not used in these studies, in addition to the human ES/

iPS-derived regeneration, there was also ongoing regeneration

by host satellite cells. Thus, it might be possible to improve

engraftment levels by preconditioning muscles with irradiation

(Skuk et al., 2010). Moreover, these cell preparations demon-

strate significant scalability in response to maintained PAX7

expression. In the experiments described here, >80-fold expan-

sion was achieved over 2 weeks, and much greater expansion is

likely possible, potentially facilitating delivery of much larger

numbers of cells. It will then be interesting to determine whether,

in addition to improved contractility, ES-/iPS-myogenic trans-

plantation can improve more complex functional parameters

such as resistance to eccentric exercise-induced injury, general

motility, or, in more severe models such as mdx/mTR mice

(Sacco et al., 2010), life span.

In the system we describe, the in vitro expansion potential and

the in vivo functional regeneration of PAX7-derived myogenic

progenitors allows one to envision producing therapeutic quan-

tities of myogenic progenitor cells for clinical evaluation in

muscular dystrophies. However, before this is attempted, it will
ted muscles, representative of donor human-derived and host satellite cells,

cross-sections of TA muscles was counted. Sections spanned entire muscles.

dicate respective percentages. Data are also shown as percentage per human

mice. Immunofluorescence staining with anti-human DYSTROPHIN antibody

IN (in red) in NSG recipient muscles. Scale bars represent 100 mm. See also
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be necessary to establish nongenetic methods of delivering

PAX7 to generate equivalent myogenic progenitors. These could

include the utilization of safer transient vectors, the transduction

of recombinant proteins, or the use of synthetic modified mRNA,

approaches that have been used with success to generate inte-

gration-free iPS cells.

EXPERIMENTAL PROCEDURES

Human iPS Induction

Human iPS cells were generated from adult human fibroblasts, as previously

described (Dimos et al., 2008). Detailed information on the generation and

full characterization of the two iPS clones studied here, IPRN13.13 and

IPRN14.57, is provided in the Supplemental Experimental Procedures.

Generation of Human Inducible PAX7 ES and iPS Cell Lines

Human H9 ES cells and the iPS clones referred above were grown in feeder-

free conditions using mTeSR medium on human ESC qualified Matrigel (BD

Biosciences)-coated plates. To generate iPAX7 pluripotent cells, we trans-

duced ES and iPS cells with a lentiviral vector expressing the reverse tet-trans-

activator (rtTA) (Bosnakovski et al., 2008). The full-length human PAX7 cDNA

(clone ID 40121582, Open Biosystems) was subcloned into pSAM2, a lentiviral

construct containing the transactivator, a second-generation tet-responsive

element (sgTRE) that allows the expression of the target gene upon doxycy-

cline (dox) induction, and IRES-EGFP, which allows confirmation of integration

and inducible expression (Bosnakovski et al., 2008). Vectors were cotrans-

fected with packaging and coat protein constructs D8.91 and pVSVG into

293T cells using the FuGENE 6 transfection reagent (Roche). Virus-containing

supernatant was collected 48 hr after transfection, filtered through a 0.45 mm

filter, and used for infection. Human ES cells and iPS cells were coinfected with

rtTA and pSAM2-PAX7 simultaneously. ES/iPS cells containing the PAX7

insert were purified by FACS based on GFP expression following an overnight

incubation with dox (Sigma) at 0.75 mg/ml.

Differentiation of Human ES/iPS Cells into Myogenic Progenitors

Detailed information is provided in the Supplemental Experimental

Procedures.

Real-Time PCR Analysis

Real-time PCR for muscle-specific genes was performed using probe sets

from Applied Biosystems.

FACS Characterization

A detailed description is provided in the Supplemental Experimental

Procedures.

NSG-mdx4Cv Mice

Mdx4Cv (B6Rox.Cg-Dmdmdx-4Cv/J) andNSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ)

mice were purchased from Jackson Laboratories (stock numbers 002378

and 005557, respectively). The dystrophin and IL2Rg genes are both X-linked:

recombinant X chromosomes were isolated by crossing females bearing these

mutations in transwith wild-typemales. Onemale and one female recombinant

were identified. The line was then established by sibmating and selecting for

homozygosity of the Prkdcscid mutation and kept as mixed-inbred.

Transplantation Studies

Animal experiments were carried out according to protocols approved by the

University of Minnesota Institutional Animal Care and Use Committee. We

used 5- to 8-week-old male NSG mice from Jackson Laboratories (stock

number 002378) and NSG-mdx4Cv mice (above) for these in vivo studies.

Before intramuscular cell transplantation, mice were preinjured with cardio-

toxin, as previously described (Darabi et al., 2008). At 24 hr after cardiotoxin

damage into both TA muscles, myogenic progenitors from iPAX7 ES or iPS

cells (3 3 105 cells/15 ml PBS) were injected into left TA muscles, whereas

the right leg received the same volume of PBS as the negative control.
Muscle Preparation for Mechanical Studies

For the measurement of contractile properties, mice were anaesthetized with

avertin (250 mg/kg intraperitoneal), and intact TA muscles were dissected and

placed in an experimental organ bath, as previously described in detail (Darabi

et al., 2008). Detailed information is provided in the Supplemental Experi-

mental Procedures.

Immunofluorescence Staining of Cultured Cells and Tissue Sections

Two months after transplantation, muscles were harvested and frozen in iso-

pentane cooled in liquid nitrogen. Serial 8 to 12 mm cryosections were

collected. For immunofluorescence staining, cells cultured on slides and tissue

cryosections were either fixed using cold acetone or 4% PFA or unfixed (in the

case of human DYSTROPHIN staining), permeabilized with 0.3% Triton X-100

(Sigma), blocked with 3% bovine serum albumin and 0.01% Triton X-100 in

PBS, and then incubated with appropriate antibodies. For satellite cell quanti-

fication, slides were stained with DAPI, Pax7, human LAMIN AC, and Laminin

(Skuk et al., 2010), and the number of mouse-derived (Pax7+LAMIN AC�)
versus human-derived (PAX7+LAMIN AC+) satellite cells were quantified in

cross-sections of TA muscles (two cross-sections/mice; ten per group). Abso-

lute numbers and respective percentages were calculated and plotted. All anti-

bodies are listed in the Supplemental Experimental Procedures.

Statistical Analysis

Differences between samples were assessed by using the Student’s two-

tailed t test for independent samples.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/j.

stem.2012.02.015.
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