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Summary
Background We report clinical safety and biochemical effi  cacy from a dose-ranging study of intravenously administered 
AVI-4658 phosphorodiamidate morpholino oligomer (PMO) in patients with Duchenne muscular dystrophy.

Method We undertook an open-label, phase 2, dose-escalation study (0·5, 1·0, 2·0, 4·0, 10·0, and 20·0 mg/kg 
bodyweight) in ambulant patients with Duchenne muscular dystrophy aged 5–15 years with amenable deletions in 
DMD. Participants had a muscle biopsy before starting treatment and after 12 weekly intravenous infusions of 
AVI-4658. The primary study objective was to assess safety and tolerability of AVI-4658. The secondary objectives 
were pharmacokinetic properties and the ability of AVI-4658 to induce exon 51 skipping and dystrophin restoration by 
RT-PCR, immunohistochemistry, and immunoblotting. The study is registered, number NCT00844597.

Findings 19 patients took part in the study. AVI-4658 was well tolerated with no drug-related serious adverse events. 
AVI-4658 induced exon 51 skipping in all cohorts and new dystrophin protein expression in a signifi cant dose-
dependent (p=0·0203), but variable, manner in boys from cohort 3 (dose 2 mg/kg) onwards. Seven patients responded 
to treatment, in whom mean dystrophin fl uorescence intensity increased from 8·9% (95% CI 7·1–10·6) to 16·4% 
(10·8–22·0) of normal control after treatment (p=0·0287). The three patients with the greatest responses to treatment 
had 21%, 15%, and 55% dystrophin-positive fi bres after treatment and these fi ndings were confi rmed with western 
blot, which showed an increase after treatment of protein levels from 2% to 18%, from 0·9% to 17%, and from 0% to 
7·7% of normal muscle, respectively. The dystrophin-associated proteins α-sarcoglycan and neuronal nitric oxide 
synthase were also restored at the sarcolemma. Analysis of the infl ammatory infi ltrate indicated a reduction of 
cytotoxic T cells in the post-treatment muscle biopsies in the two high-dose cohorts.

Interpretation The safety and biochemical effi  cacy that we present show the potential of AVI-4658 to become a disease-
modifying drug for Duchenne muscular dystrophy.

Funding UK Medical Research Council; AVI BioPharma. 

Introduction
Duchenne muscular dystrophy is a progressive, severely 
disabling neuromuscular disease that aff ects one in 
3500 newborn boys and causes premature death.1 In 
Duchenne muscular dystrophy, the open reading frame 
of the X-linked dystrophin gene (DMD) is disrupted by 
deletions (roughly 65%), duplications (10%), point 
mutations (10%), or other smaller rearrangements. 
Dystrophin is located underneath the sarcolemma and 
assembles with sarcolemmal proteins such as dystro-
glycan, α-sarcoglycan, and neuronal nitric oxide synthase 
(NOS) to form the dystrophin-associated glyco protein 
complex. The essential function of dystrophin in muscle 
is to connect the subsarcolemmal cytoskeleton to the 
sarcolemma by binding N-terminally to F-actin and 
C-terminally to β-dystroglycan. Loss of dystrophin results 
in infl ammation, muscle degeneration, and replacement 
of muscle with fi broadipose tissue.2

In the milder allelic Becker muscular dystrophy, 
dystrophin mutations do not disrupt the open reading 
frame, a shortened but functional dystrophin protein is 
produced, and most patients are able to walk into late 
adulthood and have a normal lifespan.3 Therefore, 
induction of exon skipping to restore the open reading 
frame is an attractive therapeutic strategy in Duchenne 
muscular dystrophy that can be achieved with splice-
switching oligomers. These oligomers are typically 
20–30 nucleotides in length and are complementary in 
sequence to regions of the pre-mRNA transcript 
relevant for targeted DMD exon skipping.4 Splice-
switching oligomers targeting dystrophin exons have 
been successfully used to restore dystrophin expres-
sion in vitro and in various animal models of 
Duchenne muscular dystrophy.5,6 In the mdx mouse, 
adminis tra tion of 2 Ó-methyl-ribooligonucleoside-
phosphorothioate (2 ÓMe) and phosphorodiamidate 
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morpholino oligomers (PMOs) identifi ed PMOs as 
more eff ective for induction of exon skipping and 
restoration of long-lasting dystrophin production after 
intramuscular or intravenous administration.7 In the 
X-linked muscular dystrophy dog, PMO administration 
was followed by dystrophin restoration and clinical 
benefi t without adverse reactions.6

Two proof-of-principle clinical trials in patients with 
Duchenne muscular dystrophy, who received one 
intramuscular administration of either 2 ÓMe8 or PMO9 
targeted to skip exon 51, showed effi  cient dystrophin 
restoration. More recently, in an open-label, dose-
escalation study in 12 boys with Duchenne muscular 
dystrophy,10 weekly subcutaneous injections of PRO051, a 
2 ÓMe splice switching oligomer, at 0·5, 2, 4, and 6 mg/kg 
bodyweight for 5 weeks induced skipping of exon 51 and 
increased dystrophin concentrations. A 12-week extension 
with a dose of 6 mg/kg bodyweight of PRO05110 was well 
tolerated and was followed by stabilisation of muscle 
function, but no signifi cant improvement in a 6-min walk 
test. We report biochemical effi  cacy and clinical safety 
from a dose-ranging study of the fi rst intravenous 
systemically administered PMO, AVI-4658, in patients 
with Duchenne muscular dystrophy.

Methods
Study design and participants
This open-label phase 2 study was approved by the UK 
Medicines and Healthcare Products Regulatory Agency. 
The UK Gene Therapy Advisory Committee provided 
ethics approval and site-specifi c approval under the 
number GTAC157 (EudraCT number 2007-004695-39) 
for both active trial sites in London and Newcastle, UK. 
Additionally, the study was adopted by the institutional 
review boards at both sites. Participants were aged 

5–15 years and had genetically confi rmed diagnosis of 
Duchenne muscular dystrophy with an out-of-frame 
deletion eligible for correction by skipping of exon 51. 
The absence of additional deletions and variants in the 
splice switching oligomer duplex formation region was 
confi rmed in all participants by dystrophin exonic 
multiplex ligation-dependent probe amplifi cation and 
DNA sequencing. Participants were enrolled after written 
informed assent from the child and written informed 
consent of a parent or legal guardian was obtained. 
Further study details are shown in the webappendix 
pp 1–3; the protocol is available online. If no original 
diagnostic muscle biopsy sample was available, a sample 
was obtained from the biceps brachii muscle 
(16 participants) and a post-treatment sample was taken 
from the contralateral biceps 2 weeks after the last dose 
of the study drug.

Figure 1 shows the dose escalation and cohort 
assignment. The data safety monitoring board met with 
clinical investigators and the sponsor to review safety 
before dose escalations took place. Each cohort led with a 
single patient and, after three doses, a safety monitoring 
committee consisting of clinical investigators, the 
sponsor medical monitor, and the medical study monitor 
reviewed all safety data from that patient before enrolment 
of subsequent patients to expand that cohort. Dose 
escalation occurred after informed discussion of the data 
safety monitoring board when all patients in the previous 
cohort had received at least 3 weeks of treatment.

Procedures
AVI-4658 (sequence CTCCAACATCAAGGAAGATGGC-
ATTT CTAG),11 an exon 51-targeting PMO, was provided 
by AVI BioPharma (Bothell, WA, USA) at 100 mg/mL in 
phosphate-buff ered saline (1 mL/vial). It was diluted in 

Figure 1: Patients recruited to the trial, their assignment to cohorts, and the dose-escalation scheme
Each full red box represents a time interval of 12 weeks’ dosing. Arrows show the timepoints at which the data safety monitoring board met with clinical investigators 
and the sponsor to review safety before subsequent dose escalations. *Patient withdrawn from study after seven doses.
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up to 50 mL saline (NaCl 0·9% v/w) for intravenous 
infusion over 1 h.

Exon 51 skipping in muscle biopsy samples was 
assessed by RT-PCR.9 Dystrophin expression in pre-
treatment and post-treatment muscle was investigated 
fi rst by immunohistochemical detection of dystrophin 
with MANDYS10612 (MDA Monoclonal Antibody 
Resource, Glenn Morris, Oswestry, UK) and Dys2 
(Novacastra, UK) antibodies, initially assessed by two 
masked investigators. To control for the presence of trace 
levels of dystrophin in the pretreatment muscle, as well 
as revertant fi bres,13,14 we set a baseline using sections of 
pretreatment muscles from each patient when counting 
dystrophin-positive fi bres in post-treatment muscles, so 
that only any revertant fi bres were seen as positive. We 
then used this threshold to count the dystrophin-positive 

fi bres in sections of post-treatment muscle of that patient.2 
The investigator had to be unmasked to which section 
came from the pretreatment and post-treatment biopsies. 
The semi quantitative measurements of dys trophin, 
α-sarcoglycan, and neuronal NOS expression levels were 
done as previously described.13 Finally, western blotting 
was done with the antidystrophin antibody Dys115 and 
quantifi ed as explained in the webappendix p 4.

Infl ammatory infi ltrates in muscle biopsy samples 
were examined by immunohistochemistry with anti-
bodies against CD3 pan T cells, CD4 T-helper cells, and 
CD8 cytotoxic T cells (webappendix p 3). Antidystrophin 
antibody induction in patients’ sera was tested at week 1 
and week 12.9 Pharmacokinetic parameters of AVI-4658 
were established from plasma and urine taken over 24 h 
at the fi rst, sixth, and 12th doses. Experimental details are 

Mutation* Age 
(years)†

Weight 
(kg)†

6-min walk 
test at 
baseline 
(m)‡

Cardiomyopathy 
at recruitment

Dose and regimen of corticosteroid treatment Other regular 
treatments taken at 
study entry

Serious or severe adverse 
events and relation to 
AVI-4658

Cohort 1 (0·5 mg/kg)

P1 Del 48–50 9 31 410 No Prednisolone 25 mg, intermittent (0·81 mg/kg per day) ·· ··

P2 Del 45–50 8 29 254 Yes Prednisolone 12·5 mg, daily (0·43 mg/kg per day) Perindopril, calcium, 
vitamin D

··

P3 Del 49–50 8 38 437 No Prednisolone 25 mg, intermittent (0·66 mg/kg per day) Omeprazole ··

P4 Del 48–50 8 36 139 No Prednisolone 20 mg, intermittent (0·55 mg/kg per day) Calcium, vitamin D ··

Cohort 2 (1 mg/kg)

P5 Del 45–50 6 26 250 No Prednisolone 22·5 mg, intermittent (0·86 mg/kg per day) ·· ··

P6 Del 48–50 6 21 371 No Prednisolone 12·5 mg daily (0·6 mg/kg per day) Ranitidine ··

Cohort 3 (2 mg/kg)

P7 Del 49–50 13 47 375 No Prednisolone 15 mg daily (0·32 mg/kg per day) Risedronate, calcium, 
vitamin D

··

P8 Del 49–50 9 38 350 No Prednisolone 15 mg daily (0·4 mg/kg per day) Ranitidine Post-anaesthesia 
hospitalisation for 1 day 
due to vomiting, unrelated

Cohort 4 (4 mg/kg)

P9 Del 52 10 30 301 Regional wall 
hypokinesia, 
normal FS

Prednisolone 15 mg daily (0·49 mg/kg per day) Risedronate, calcium, 
vitamin D

Cardiomyopathy, possible

P10 Del 48–50 10 62 146 No Not on steroids because of side-eff ects ·· Ankle fracture, unrelated

P11 Del 45–50 9 28 477 No Prednisolone 15 mg daily (0·54 mg/kg per day) Risedronate, calcium, 
vitamin D

··

Cohort 5 (10 mg/kg)

P12 Del 49–50 6 25 317 No Prednisolone 20 mg, intermittent (0·8 mg/kg per day) Calcium, vitamin D ··

P13 Del 48–50 7 22 443 No Prednisolone 15 mg daily (0·68 mg/kg per day) ·· ··

P14 Del 47–50 12 52 138 Yes Defl azacort 30 mg daily (0·58 mg/kg per day) Perindopril, bisoprolol, 
risedronate, calcium, 
vitamin D

··

P15 Del 49–50 10 39 169 No Prednisolone 20 mg daily (0·5 mg/kg per day) ·· ··

Cohort 6 (20 mg/kg)

P16 Del 45–50 9 31 515 No Prednisolone 20 mg daily (0·65 mg/kg per day) ·· ··

P17 Del 45–50 7 25 492 No Prednisolone 17·5 mg daily (0·6 mg/kg per day) ·· ··

P18 Del 49–50 10 45 265 Yes Defl azacort 30 mg daily (0·66 mg/kg per day) Lisinopril ··

P19 Del 45–50 9 30 405 No Prednisolone 15 mg daily (0·5 mg/kg per day) Calcium, vitamin D ··

Intermittent=10 days on and 10 days off  treatment. FS=fractional shortening. *Deleted exons in the dystrophin gene. †At the fi rst dose of AVI-4658. ‡Assessed a week before the fi rst dose. 

Table 1: Clinical summary
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provided in the webappendix p 3; pharmacokinetic 
parameters were calculated with WinNonlin Professional 
(version 5.2.1). Muscle function testing (North Star 
ambulatory assessment,16 myometry,17 step activity 
monitoring,18 and 6-min walk test19) was undertaken to 
identify any dose-dependent changes.

The primary objective of this study was to assess the 
safety of systemic administration of escalation of doses 
of AVI-4658. The secondary objectives were to investigate 
the pharmacokinetics of AVI-4658 and the biochemical 
effi  cacy as assessed by induction of dystrophin expression 
in muscle. The functionality of restored dystrophin was 
assessed by study of both the relocalisation of dystrophin-
associated glycoprotein complex proteins to the sarco-
lemma and the eff ect of restored dystrophin on muscle 
infl ammation.

Statistical analysis
No formal sample size calculations were done. All 
descriptive statistical analyses were done with Graph Pad 
Prism 4 statistical software. We calculated p values using 
a paired t test to compare pretreatment versus post-
treatment samples. The exact Cochran-Armitage trend 
test was used to show the dose response to AVI-4658.

The study was registered at ClinicalTrials.gov, number 
NCT00844597.

Role of the funding source
The UK Medical Research Council funded the study 
teams, patients’ travel, and the acquisition and analysis 

of the clinical and biochemical outcome measures. AVI 
BioPharma funded the regulatory submission, the study 
sponsorship including clinical and medical monitoring, 
data collection, and provision of the study drug. FM, KB, 
SC, and SBS had complete access to the data and FM as 
corresponding author was responsible for submission 
for publication.

Results
19 patients were enrolled within the UK: 12 at Great 
Ormond Street Hospital for Sick Children (London) and 
seven at the Royal Victoria Infi rmary (Newcastle). 
Participants fulfi lled eligibility criteria, had a mean age of 
8·7 years (range 6–13), and had the clinical phenotype of 
Duchenne muscular dystrophy (table 1). A pretreatment 
muscle biopsy confi rmed less than 5% revertant fi bres in 
all patients. Adverse events were generally mild (63%) to 
moderate (32%), consistent with complications related to 
the disorder and to the paediatric age range, and showed 
no dose-dependent increase in frequency or severity 
(webappendix p 7). Diffi  cult venous access largely due to 
cushingoid features resulted in failure to administer four 
of the planned 228 doses. Five other doses were not 
administered because of an adverse event in participant P9 
leading to discontinuation of treatment after the seventh 
dose. In total, 219 doses of AVI-4658 were administered. 
Participant P11 was enrolled to ensure that at least two 
participants in each cohort (dose) completed the dosing 
period and had a post-treatment muscle biopsy.

The 219 intravenous PMO administrations, including 
cannulation, were generally well tolerated. Laboratory 
safety assessments did not show any eff ect of AVI-4658 
on pulmonary, kidney, liver, or bone-marrow functions. 
We did not identify any widespread rash or other clinical 
signs indicating an adverse reaction; four infusions were 
associated with a local rash due to application of local 
anaesthetic cream before venepuncture. Two serious 
adverse events were reported, both unrelated to the study 
drug (table 1). Participant P9 had normal cardiac 
fractional shortening (34%) before study entry, although 
mild regional impairment of the left ventricular inferior 
segment was detected on Doppler imaging. Over the 
fi rst few weeks of study treatment, mild intermittent 
sinus tachycardia (maximum 125 beats per min) was 
noted. After the seventh dose, an echocardiogram 
revealed that his fractional shortening had fallen to 22%, 
and treatment with ACE inhibitor and β blocker was 
started. The investigators and study sponsor agreed to 
discontinue PMO administration and that this patient 
should not undergo general anaesthesia for the post-
treatment muscle biopsy. At the fi nal visit at week 26, his 
heart function had stabilised with a fractional shortening 
of 26%. This complication was judged most likely to be 
part of the well described pattern of cardiomyopathy 
associated with Duchenne muscular dystrophy. Cardiac 
investi gations in the remaining participants were 
consistent with fi ndings in the disorder. Forced vital 

Figure 2: Plasma pharmacokinetics of AVI-4658
 Mean plasma concentrations of AVI-4658 versus nominal elapsed time averaged across weeks 1, 6, and 12. Area 
under the curve (AUC) over 24 h accounted for greater than 95% of AUC0–∞, suggesting that most of the drug 
eliminated from the plasma was cleared within 24 h. AVI-4658 plasma exposure increased in a nearly proportional 
manner with dose for maximum concentration, AUC0–24, and AUC0–∞. Error bars show SDs.
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capacity did not change signifi cantly during the study 
(webappendix pp 10–11, 24).

Creatine kinase concentrations did not show any dose-
dependent trends. There was no induction of anti-
dystrophin antibodies after treatment (data not shown). 
Muscle function testing did not reveal any dose-
dependent changes (webappendix pp 12–21, 25–27). 
These assessments showed that most patients remained 
stable during the study period; four lost ambulation 
during follow-up, as was expected on the basis of their 
ambulatory stage at study entry (table 1).

The plasma half-life of AVI-4658 was short 
(1·62–3·60 h; fi gure 2), and no accumulation between 
doses was recorded. Clearance was 233–615 mL/h 
per kg, and volume of distribution was 450–981 mL/kg. 
As a result of the small sample size, a clear relation 
between dose and clearance and volume of distribution 
could not be established. Renal clearance of AVI-4658 
ranged between 116 and 229 mL/h per kg and was 
between 32·3% and 46·2% of total (plasma) clearance 
at doses between 0·5 and 4 mg/kg. At 10 and 20 mg/kg 
doses, renal clearance accounted for 60·5% and 63·8% 

of total clearance from the plasma in the fi rst 24 h 
after dosing.

Experiments on MyoD-converted patient fi broblasts 
treated with a 2 ÓMe congener of AVI-4658 were done in 
all participants11 to confi rm before the trial that the 
patients were able to correctly skip exon 51. This pre-
liminary step was done with a 2 ÓMe antisense 
oligonucleotide because PMO cannot be used to trans-
fect cells in culture, whereas 2 ÓMe can be effi  ciently 
delivered by transfection. The results of this experiment 
were positive in all patients’ cells and no qualitative 
diff erences in exon skipping between patients were noted 
(data not shown). When post-treatment muscle biopsies 
were assayed by RT-PCR, all patients had variable 
AVI-4658 induced skipping of exon 51, confi rmed by 
sequencing (webappendix p 22).

Seven patients had a post-treatment increase in 
dystrophin protein expression compared with their 
pretreatment biopsies, evidenced by at least two of the 
three methods of quantifi cation: number of dystrophin-
positive fi bres, western blotting, and semiquantita-
tive immunocytochemistry measurements (fi gure 3, 

Figure 3: Dystrophin protein expression in the seven patients who responded to treatment
(A) Transverse sections of treated (post) and untreated (pre) muscle specimens immunolabelled with MANDYS106 antibody. (B) Post-treatment biopsy samples 
from participants P15 and P18; low-magnifi cation images showing widespread and patchy dystrophin expression (arrows). (C) Western blotting of pretreatment and 
post-treatment muscle biopsy samples with antidystrophin Dys1 (exon 26–30) and antisarcomeric α-actinin antibodies; an average of 150 μg of total patient 
proteins was loaded per lane. CT=μg control muscle extract. 
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Dystrophin-positive fi bres 
(% of total muscle fi bres)

Mean fl uorescence intensity per fi bre* Dystrophin expression 
assessed by western blotting

Response to 
AVI-4658†

Pretreatment Post-
treatment

Pretreatment 
(% of control; SD)

Post-treatment 
(% of control; SD)

p value‡ Increase 
(%)

Pretreatment 
(% of control)

Post-treatment 
(% of control)

Cohort 1

P1 1% 1% 5% (2·2) 8% (4·5) 0·0101 57% None None +

P2 3% 0% 5% (2·3) 5% (1·6) 0·5120 ·· None None +

P3 1% 7% 5% (5·4) 5% (2·1) 0·9761 ·· None None +

Mean (SD) 1·7% (1·2) 2·7% (3·8) 5·0% (0·0) 6·0% (1·7) ·· ·· ·· ·· ·· 

Cohort 2

P5 0% 0% 4% (1·9) 4% (1·3) 0·3902 ·· None None +

P6 5% 1% 8% (4·2) 6% (2·7) 0·0231 ·· Trace Trace +

Mean (SD) 2·5% (3·5) 0·5% (0·7) 6·0% (2·8) 5·0% (1·4) ·· ··  ·· ··  ··

Cohort 3

P7 1% 21% 5% (1·5) 19% (28) 0·0021 314% 2% 18% +++

P8 1% 5% 7% (3·4) 5% (2) 0·0275 ·· None None +

Mean (SD) 1·0% (0·0) 13·0% (11·3) 6·0% (1·4) 12·0% (9·9) ·· ·· ··  ·· ·· 

Cohort 4

P10 5% 4% 9% (7·2) 10% (6·7) 0·0800 13% None None +

P11 1% 1% 8% (4·3) 11% (13) 0·0949 30% 1·1% 0·7% +

Mean (SD) 3·0% (2·8) 2·5% (2·1) 8·5% (0·7) 10·5% (0·7) ·· ·· ··  ·· ·· 

Cohort 5

P12 3% 6% 9% (9·8) 17% (27) 0·0015 87% None 7% ++

P13 2% 6% 11% (4·5) 10% (4·2) 0·1611 ·· None 9·6% ++

P14 0% 7% 10% (13) 13% (12) 0·1125 30% Trace Trace +

P15 1% 15% 9% (3) 27% (24) <0·0001 198% 0·9% 17% +++

Mean (SD) 1·5% (1·3) 8·5% (4·4) 9·8% (1·0) 16·8% (7·4) ·· ·· ··  ·· ·· 

Cohort 6

P16 3% 5% 11% (1·6) 13% (1·4) 0·3496 16% 0·5% None +

P17 3% 8% 9% (6) 10% (7) 0·1661 16% 0·7% 2·6% ++

P18 3% 55% 9% (4·2) 19% (1·7) <0·0001 110% None 7·7% +++

P19 5% 7% 10% (5·5) 13% (10) 0·0359 24% 5% 12·3% ++

Mean (SD) 3·5% (1·0) 18·8% (24·2) 9·8% (1·0) 13·8% (3·8) ·· ·· ·· ·· ··

Pretreatment muscle biopsy samples from participants P1, P3, and P6 were diagnostic quadriceps samples at the time of diagnosis, all other samples were obtained from 
the biceps muscle. Participant P4, who had missed two PMO doses because of cannulation challenges, declined the post-treatment muscle biopsy, but completed the rest of 
the study. Participant P9 did not undergo general anaesthesia for the post-treatment muscle biopsy because of an adverse event (cardiomyopathy) and was discontinued 
from treatment after week 7. Participant P11 was enrolled in cohort 4 to substitute for P9. Therefore, only 17 of 19 post-treatment muscle biopsy samples were obtained 
and participants P4 and P9 are not listed in this table. PMO=phosphorodiamidate morpholino oligomer.*Mean fl uorescence signal intensity of MANDYS10612 as percentage 
of control muscle (details in webappendix p 23). †Response to AVI-4658: + shows response at RNA level (exon 51 skipping), but without detectable increase of dystrophin 
expression in post-treatment muscle biopsy; ++ shows response at RNA level and increase of dystrophin expression in post-treatment muscle; and +++ shows response at 
RNA level and increase in post-treatment muscle biopsy sample with all three methods of dystrophin quantifi cation. ‡Two-tailed t test comparing the mean fl uorescence 
intensity in the pretreatment versus post-treatment biopsy sample for each patient; we assessed the dose response to AVI-4568 across cohorts using the Cochran-Armitage 
method and confi rmed a signifi cant linear trend of dose response leading to increase in dystrophin expression (responders with ++ or +++) with increasing dose (p=0·0203).

Table 2: Summary of response to AVI-4658

Figure 4: Functional analysis of restored dystrophin
(A) Expression of dystrophin, α-sarcoglycan, and neuronal NOS in post-treatment muscle biopsy samples from participants P18 and P19 was quantifi ed13 relative to 

control muscle in 40 dystrophin-positive or dystrophin-negative muscle fi bres and normalised to β-spectrin expression. To overcome high background seen with the 
neuronal NOS antibody, the average background intensity of neuronal NOS-negative membranes was subtracted from control and patient values. For participant P19, 

there was no diff erence in α-sarcoglycan intensity between dystrophin-positive and dystrophin-negative fi bres in the post-treatment muscle biopsy sample and neuronal 
NOS showed only a small increase in dystrophin-positive fi bres (paired two-tailed t test, p=0·0007). For participant P18, neuronal NOS and α-sarcoglycan intensity was 

signifi cantly increased in the dystrophin-positive fi bres (neuronal NOS mean intensity as percentage of control: dystrophin-negative fi bres 7% [SD 7], dystrophin-positive 
fi bres 28% [SD 17], paired two-tailed t test, p≤0·0001; α-sarcoglycan mean intensity as percentage of control: dystrophin-negative fi bres 45% [SD 16], dystrophin-positive 
fi bres 75% [SD 31], p<0·0001). (B) Sarcolemmal restoration of the dystrophin-associated glycoprotein complex by AVI-4658.  Post-treatment muscle biopsy samples from 

participants P19 and P18 were stained with antibodies against dystrophin (exon 43, MANDYS106), α-sarcoglycan, neuronal NOS, and β-spectrin. The arrows show the 
same dystrophin-positive fi bre in each panel. In P19 (deletion of exons 45–50) the fi bre shown by the arrow has increased α-sarcoglycan sarcolemmal expression, but not 

neuronal NOS because this patient is deleted for part of the dystrophin neuronal NOS binding site. (C) Infl ammatory infi ltrates quantifi cation on pretreatment and 
post-treatment muscle samples. Muscle sections were incubated with antibodies (DAKO, UK) raised against human CD3 (pan T cell), CD4 (helper T cell) and CD8 (killer 

T cell). For each section, the number of CD-positive cells was represented as a percentage of the total number of muscle fi bres. Patients with pretreatment and 
post-treatment values of zero are not represented. NOS=nitric oxide synthase.
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webappendix p 23). In these seven patients, mean 
dystrophin fl uorescence intensity increased from 8·9% 
(95% CI 7·1–10·6) to 16·4% (10·8–22·0) of normal control 
after treatment (p=0·0287). In the low-dose cohorts 1 to 4, 
there was no increase in dystrophin expression, with the 
exception of participant P7 in cohort 3. However, six of 
eight patients in the two high-dose cohorts 5 and 6 showed 
an increase in protein expression. Three patients, one in 
each of cohorts 3 (P7), 5 (P15), and 6 (P18), had a very 
substantial response to AVI-4658, having 21%, 15%, and 
55% dystrophin-positive fi bres, respectively. These three 
patients had also 314%, 198%, and 110% increases in 
dystrophin intensity compared with pretreatment biopsy 
on semiquantitative immunocytochemistry.13 Western 
blot analysis of these patients also showed an increase 
after treatment of protein levels from 2% to 18%, from 
0·9% to 17%, and from 0% to 7·7% of normal muscle, 
respectively (table 2).

A dose-dependent signifi cant linear increase in 
dystrophin expression was noted (table 2; exact Cochran-
Armitage trend test, p=0·0203). Additionally, AVI-4658 
administration induced signifi cant increase of dystrophin 
expression on immunocytochemistry pretreatment 
versus post-treatment in cohorts 5 and 6 (paired two-
sided t test, p=0·04). Participant P19 had dystrophin 
levels on blot of 12·3% of control muscle, but a smaller 
increase in fl uorescence intensity and percentage of 
dystrophin-positive fi bres, probably refl ecting variability 
in diff erent blocks of the muscle biopsy sample studied 
with the diff erent techniques (table 2). The functional 
properties of restored dystrophin were confi rmed by 
quantifi cation of α-sarcoglycan and neuronal NOS 
expression. Dystrophin-positive fi bres had roughly a 30% 
average increase in α-sarcoglycan expression compared 
with dystrophin-negative fi bres in the patient with the 
best response to treatment, P18 (deletion 49–50). 
Dystrophin restoration was followed by restoration of 
neuronal NOS at the sarcolemma, more so in patients 
with exon 49–50 deletions than in those with 
45–50 deletions (fi gure 4A), which is consistent with the 
observation that the neuronal NOS binding domain is 
located in dystrophin exons 42–45.20,21

Finally, the infl ammatory infi ltrate was investigated to 
establish whether dystrophin restoration had any eff ect 
on the prominent infl ammatory response seen in 
Duchenne muscular dystrophy (fi gure 4B).22 A reduction 
in infl ammatory infi ltrates was recorded in cohorts 5 
and 6, apart from in participant P15 in whom the CD8 
cell count was increased, but not around dystrophin-
positive fi bres. Furthermore, this patient did not have 
antidystrophin antibodies. Despite the small number of 
samples, the signifi cant reduction in CD3 cell count 
(paired two-tailed t test, p=0·0115) shows that restored 
dystrophin is tolerated by the immune system. The 
quotient between CD3% and dystrophin intensity in the 
seven patients who responded to treatment showed a 
signifi cant reduction in the post-treatment muscle 

biopsy samples (one-tailed paired t test, p=0·0078), 
confi rming the correlation with the increase in 
dystrophin expression.

Discussion
We show for the fi rst time that repeated systemic 
administration of a PMO splice switching oligomer 
(AVI-4658) induces targeted exon skipping in skeletal 
muscle in patients with Duchenne muscular dystrophy, 
restoring correctly localised dystrophin at the sarcolemma 
(panel). The administration of AVI-4658 was very well 
tolerated, without clear drug-induced adverse events with 
single doses of up to 900 mg and cumulative exposure 
exceeding 10 000 mg. The absence of drug-related adverse 
events after 12 weeks is encouraging, but caution is still 
needed because any splice switching oligomer would 
need to be given lifelong.

A clear and signifi cant dose response was recorded in 
terms of dystrophin protein expression, leading to seven 
patients who responded to treatment at higher doses. 
This fi nding was accompanied by a signifi cant reduction 
of infl ammatory infi ltrates in patients in the two highest 
dose cohorts. Patients with the highest levels of 
dystrophin also had increased sarcolemmal expression of 
proteins of the dystrophin-associated glycoprotein 
complex. This outcome included restoration of neuronal 
NOS to the sarcolemma in patients with deletions that 
did not disrupt the NOS binding site20 localised in 
spectrin repeats 16/17 of the rod domain. The restoration 
of neuronal NOS is benefi cial for patients in whom 
ongoing muscle damage is compounded by paradoxical 
exercise-induced vasoconstriction23 as a result of 
dysfunctional fi ne-tuning of blood fl ow.20

The reduced infl ammation in muscle could be related 
to reduced necrosis due to improved sarcolemmal 
function with better resistance to mechanical load, 
induced by the restored dystrophin.24 We noted variable 
levels of protein restoration in the seven patients who 
responded to treatment and considered possible reasons 
for this variability. Variability due to specifi c deletions 
and intronic breakpoints of individual patients could not 
be detected in vitro, because the response to splice 
switching oligomer in all patients’ myotubes was 
qualitatively similar. The stability of the resulting protein 
might be relevant21 since the patients with the three 
greatest responses to treatment all had 49–50 deletions 
and mildly aff ected patients with Becker muscular 
dystrophy or even asymptomatic individuals with deletion 
of exons 49–51 have been described,25 suggesting that this 
shortened protein is highly functional. However two 
patients who did not respond to treatment (cohort 1, P3, 
who had no increase in either dystrophin-positive fi bres 
or dystrophin expression, and cohort 3, P8, who had an 
increase in dystrophin-positive fi bres, but not in 
dystrophin expression) and one with a small response 
(cohort 5, P12) also have the deletion 49–50; additionally, 
patients with exon 45–50 deletions did not have more 
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protein than did patients with other genotypes, although 
asymptomatic individuals with 45–51 deletions are on 
record.26–28 An aspect to consider is the genetic 
background, which in humans is variable, including the 
intronic deletions breakpoints. A further variable could 
be diff erences in pharmacodynamics of PMO, although 
our analysis suggests that there was not a clear correlation 
between response and maximum concentration and area 
under the curve for AVI-4658. When concomitant 
treatments, age, and extent of muscle pathological 
changes were taken into account, no obvious pattern 
emerged. Immune response to novel dystrophin epitopes 
induced by exon skipping could be another reason for 
the variability; however, this explanation seems unlikely 
because we did not detect humoral immunity in any of 
the patients and furthermore we documented a reduction 
in T cells in muscle biopsy samples in cohorts 5 and 6, 
who showed the highest dystrophin levels.

In a recent systemic exon skipping trial in Duchenne 
muscular dystrophy using the 2 ÓMe chemistry, high 
numbers of dystrophin-positive fi bres but low dystrophin 
levels were described.10 However, the study had no 
pretreatment muscle biopsy in patients in whom a 
dystrophin response was reported, making establishment 
of a proper baseline to distinguish minimally positive 
from negative fi bres diffi  cult. Indeed, in Duchenne 
muscular dystrophy, sections of muscle often have 
discernible trace levels after immunostaining with the 
antibodies to dystrophin used,9,13 and these pretreatment 
levels need to be taken into account to provide an accurate 
measurement of both number of positive fi bres and 
dystrophin intensity.9,10,13 In our study, we fi rst established 
the level of dystrophin in the pretreatment muscle biopsy 
sample, and regarded those levels as the baseline for that 
individual—ie, judged fi bres as positive only if they 
exceeded the intensity levels of the pretreatment biopsy.

With respect to the variable dystrophin restoration we 
have reported, the most plausible conclusion is that 
stochastic events aff ect muscle splice switching oligomer 
targeting and contribute to variability. Animal models 
treated with both 2 ÓMe and PMO also showed 
substantial variability of dystrophin expression, even in 
contralateral muscles from the same animal.5,29 Because 
splice switching oligomers do not target skeletal muscle 
specifi cally, their uptake is partly dependent on local 
events such as muscle perfusion, damage, and 
infl ammation. To obtain more uniform protein 
production, either high doses of PMO or prolonged 
frequent administration, or both, could be considered 
because PMOs seem to be well tolerated.30 The safety 
profi le we noted with AVI-4658 at doses of 20 mg/kg, 
supported by animal testing at up to human equivalent 
doses of 100 mg/kg,30 is encouraging and bodes well for 
longer administration periods and higher clinical dose. 
Preclinical data suggest that repeated administration of 
even small doses over an extended time achieves more 
homogeneous restoration of dystrophin than does the 

same cumulative dose administered as a bolus injection 
of PMO.31 This fi nding suggests that a long period of 
administration will be necessary to achieve homogeneous 
dystrophin expression.

In terms of the clinical effi  cacy, the PRO051 study10 
claims that eight of 11 boys who were ambulant at entry 
to the extension study showed improvement in the 6-min 
walking test of 35·2 m (SD 28·7) after 12 weeks’ 
treatment; however, this change was not signifi cant. 
Moreover, several of these children were younger than 
7 years and, according to longitudinal observation,19 boys 
younger than 7 years with Duchenne muscular dystrophy 
gain motor function. Additional confounding factors are 
the variability in the walking test (SD 36 m19) and the 

Panel: Research in context 

Systematic review
We searched PubMed in March, 2011, using the keywords 
“Duchenne”, “antisense”, “exon skipping”, and “clinical trial”. 
Splice-switching oligomers have been tested previously after 
intramuscular injection in animal models and in patients 
aff ected by Duchenne muscular dystrophy.6,8,9 An open-label, 
dose-escalation study10 in 12 boys with Duchenne muscular 
dystrophy receiving weekly subcutaneous injections of the 
2´OMe PRO051 at 0·5, 2, 4, and 6 mg/kg bodyweight for 
5 weeks induced skipping of exon 51. Low dystrophin levels 
were reported after treatment, although the absence of 
pretreatment samples makes precise quantifi cation of the 
biochemical effi  cacy of PRO051 diffi  cult. This study was 
followed by a 12-week extension study using a dose of 
6 mg/kg bodyweight of PRO051, with stabilisation of muscle 
function, but no signifi cant improvement in a 6-min walk test.

Interpretation
We report for the fi rst time that the systemic administration 
of a splice-switching oligomer based on PMO chemistry 
(AVI-4658) induced restoration of dystrophin expression in 
skeletal muscle of boys with Duchenne muscular dystrophy. 
The clinical and laboratory safety data in our open-label, 
dose-escalation, repeated intravenous administration study 
showed that AVI-4658 was well tolerated. Seven patients had 
a signifi cant dose response, six of whom were in the two 
high-dose cohorts, showing restoration of dystrophin protein 
expression. This fi nding was associated with increased 
expression of proteins associated with dystrophin, such as 
α-sarcoglycan and neuronal nitric oxide synthase, the 
sarcolemmal localisation of which is disrupted in Duchenne 
muscular dystrophy. Additionally, we showed a 
dose-dependent reduction in the infl ammatory infi ltrate in 
muscles of boys with Duchenne muscular dystrophy in whom 
dystrophin expression was restored. This fi nding is 
encouraging because it suggests that the restored dystrophin 
attenuates the infl ammation that is a hallmark of the 
disease’s pathology; it also suggests that the newly produced 
dystrophin does not produce novel immunogenic epitopes.
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powerful placebo eff ect of open-label studies. Despite 
these limitations, this observation is encouraging. 

In our study, boys remained mostly stable during follow-
up, but because the period during which AVI-4658 was 
administered was only 12 weeks, we did not observe any 
signifi cant clinical improvement, and the lack of a study 
extension was a limitation of our study, since only 
extended exposure to the drug is able to aff ect progression 
of the disease. Nevertheless, our results are very 
encouraging because they prove that doses of 10 mg/kg 
and 20 mg/kg of AVI-4658, which were very well tolerated, 
consistently induced dystrophin expression in the seven 
patients who responded to treatment up to levels typically 
found in patients with Becker muscular dystrophy or 
disease of intermediate severity between Duchenne 
muscular dystrophy and Becker muscular dystrophy. The 
restoration of the dystrophin-associated glycoprotein 
complex suggests that the produced dystrophin is 
functional. Because of the variability of dystrophin 
restoration, MRI or spectroscopy of muscle are promising 
methods to assess the eff ect of systemic treatment in 
Duchenne muscular dystrophy. Recent studies have 
described the correlation between MRI and the degree of 
dystrophic muscle changes,32 the eff ect of exercise in 
Duchenne muscular dystrophy,33 and reduction of muscle 
infl ammation after PMO treatment in dogs.6

On the basis of our data and recent preclinical data,31 
we expect that extended administration of AVI-4658 at 
doses of 10 mg/kg or higher will result in suffi  cient 
dystrophin expression to have a positive eff ect on the 
prevention of muscle degeneration in Duchenne 
muscular dystrophy. Indeed, chronic administration 
(1 year) of doses of PMO similar to the one used in our 
study produced signifi cant improvement in muscle 
pathology and function in mdx mice.34 AVI-4658 has the 
potential to ameliorate the progressive natural history of 
Duchenne muscular dystrophy and now needs to be 
investigated in clinical effi  cacy trials.
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