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SUMMARY

Alternative splicing provides a means to increase the
complexity of gene function in numerous biological
processes, including nervous system wiring. Navi-
gating axons switch responses from attraction to re-
pulsion at intermediate targets, allowing them to
grow to each intermediate target and then to move
on. The mechanisms underlying this switch remain
poorly characterized. We previously showed that
the Slit receptor Robo3 is required for spinal com-
missural axons to enter and cross the midline inter-
mediate target. We report here the existence of two
functionally antagonistic isoforms of Robo3 with dis-
tinct carboxy termini arising from alternative splicing.
Robo3.1 is deployed on the precrossing and cross-
ing portions of commissural axons and allows mid-
line crossing by silencing Slit repulsion. Robo3.2 be-
comes expressed on the postcrossing portion and
blocks midline recrossing, favoring Slit repulsion.
The tight spatial regulation of opponent splice vari-
ants helps ensure high-fidelity transition of axonal re-
sponses from attraction to repulsion at the midline.

INTRODUCTION

Developing axonsgrow over long distances bynavigating a series

of intermediate targets along their trajectory to their final destina-

tion. Axons are attracted to intermediate targets, but upon arriv-

ing they must switch their responsiveness to cues at the targets

so they are no longer attracted and instead are repelled away;

this plasticity of responses allows axons to move on to the next

leg of their trajectory (Dickson, 2002; Tessier-Lavigne and Good-

man, 1996). Despite the importance of this switch for accurate

long-range axon guidance, the mechanisms underlying it remain

only partially understood. The midline of the central nervous sys-

tem has provided a well-studied example of an intermediate tar-

get at which axons switch their responses. The axons of commis-

sural interneurons grow toward the midline in response to
attractants, including netrins and, in vertebrates, Sonic hedge-

hog (Charron et al., 2003; Dickson, 2002; Tessier-Lavigne and

Goodman, 1996). These axons are initially insensitive to repel-

lents also present at the midline, including Slit proteins; upon

crossing the midline, a switch occurs such that these axons

lose responsiveness to the attractants and instead become re-

pelled by the repellents, so that the axons can leave the midline

and then never recross (Kaprielian et al., 2001; Kidd et al.,

1999; Long et al., 2004; Shirasaki et al., 1998; Zou et al., 2000).

The switch from attraction to repulsion requires coordinated

control of the expression level as well as the activity of guidance

receptors on the axon surface. For example, as axons approach

the midline, receptors of the DCC family mediate the attractive

action of netrins (Dickson, 2002), while the expression level of

Robos, receptors for Slits, is kept low in order to minimize Slit re-

pulsion (Kidd et al., 1998a; Long et al., 2004). Upon crossing,

however, the axons upregulate Robo expression and become

Slit responsive (Kidd et al., 1998a; Long et al., 2004), and Robo

activity in turn contributes to switching off DCC attraction (Stein

and Tessier-Lavigne, 2001).

A variety of mechanisms have been suggested to control the

expression and activity of guidance receptors during midline

crossing (reviewed in Garbe and Bashaw, 2004), including pro-

tein trafficking (e.g., in Drosophila, the Commissureless protein

prevents Robo from localizing to the axon surface before midline

crossing [Keleman et al., 2002; Kidd et al., 1998b]), local protein

synthesis (e.g., the EphA2 receptor appears to be locally trans-

lated only in postcrossing axons [Brittis et al., 2002]), and the for-

mation of receptor complexes (e.g., a Robo/DCC interaction in

postcrossing axons can inhibit DCC activity [Stein and Tessier-

Lavigne, 2001]).

Alternative pre-mRNA splicing provides an additional means

to increase the complexity of gene function by producing protein

products with a spectrum of properties from a single coding lo-

cus (Black, 2000; Graveley, 2001). This mechanism has been

shown to diversify the functions of a number of genes regulating

neural function and neural wiring (reviewed in Lipscombe, 2005;

Li et al., 2007). For example, significant alternative splicing has

been documented for neurexins and neuroligins, molecules im-

plicated in establishing synaptic specificity (Craig and Kang,

2007). An extreme example of the molecular diversity generated
Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc. 325

mailto:marctl@gene.com


Neuron

Robo3 Splice Variants Govern the Midline Switch
by alternative splicing is provided by the neural recognition

molecule Down’s syndrome cell adhesion molecule (DSCAM),

which, in Drosophila, can exist in tens of thousands of isoforms

arising from alternative splicing (Zipursky et al., 2006). The evi-

dence indicates that each isoform binds tightly to itself but not

to the other isoforms, a remarkable degree of homophilic recog-

nition that provides the basis for self-repulsion of the processes

of individual neural cells (Hattori et al., 2007; Matthews et al.,

2007; Wojtowicz et al., 2007). Whether alternative splicing is

also used to diversify the function of guidance molecules at

intermediate targets has not, however, been described.

Here, we report that alternative splicing provides a crucial level

of control over the function of a guidance receptor used to navi-

gate the midline intermediate target in the spinal cord. Previously,

we described an unexpected role for the third mammalian Robo,

Robo3 (also known as Rig1 [Yuan et al., 1999]), in regulating com-

missural axon guidance at the spinal cord midline. Contrary to the

other two vertebrate Robos, Robo1 and Robo2, whose expres-

sion, as described above, is low before crossing and high after

crossing (Long et al., 2004), Robo3 is expressed at high levels be-

fore crossing and is gradually downregulated after crossing (Sa-

batier et al., 2004; see also Figure 1B). Also contrasting with the

other two Robos, Robo3 activity keeps commissural axons non-

Figure 1. Alternative Splicing of Robo3 Generates

Two Isoforms with Distinct Expression Patterns in

Commissural Axons

(A) Schematic of the structures of Robo3 isoforms and the al-

ternative splicing of the 30 coding sequence (‘‘e’’ denotes an

exon, ‘‘i’’ an intron, and ‘‘*’’ the stop codons utilized in the

two transcripts).

(B–G) Immunohistochemistry was performed using three

Robo3 antibodies on transverse sections of the wild-type spi-

nal cord at E11.5 (B–D) and E12.5 (E–G). (B and E) An antibody

against the extracellular domain of Robo3 (anti-Robo3ecto),

which recognizes both Robo3 isoforms, detected epitopes in

precrossing axonal domains (arrows), at the midline (brackets),

and in the postcrossing ventral fiber tracts (arrowheads).

(C and F) A Robo3.1-specific antibody detected epitopes in ax-

onal domains that are precrossing and in the midline region. (D

and G) A Robo3.2-specific antibody detected epitopes mostly

on postcrossing axonal domains. Scale bar, 100 mm.

(H) Schematic showing the location of the cell body of a com-

missural neuron and the trajectory of its axon, as well as the ax-

onal domains of Robo3 isoform expression, as seen in a trans-

verse section view. D, dorsal; V, ventral.

responsive to midline Slits before crossing, and it

does so by silencing Slit repulsion that would other-

wise be mediated by Robo1 and Robo2 (Sabatier

et al., 2004). As a result, in Robo3 knockout mice

commissural axons are prematurely responsive to

midline Slit repellents before midline crossing and

are therefore totally unable to cross the midline

(Marillat et al., 2004; Sabatier et al., 2004; also see

Figure 2J). Mutations in human Robo3, discovered

in patients with horizontal gaze palsy and progres-

sive scoliosis syndrome (HGPPS), were similarly

found to result in significant midline crossing de-

fects (Jen et al., 2004).

Here, we report an unexpected complexity and sophistication

in the function of Robo3 that arises from alternative splicing of its

pre-mRNA. We found that two isoforms of Robo3, Robo3.1 and

Robo3.2, are generated by differential intron retention, a less

common form of alternative splicing. These isoforms have oppo-

site functions: one favors, whereas the other blocks, midline

crossing. In addition, they are tightly spatially regulated, with

Robo3.1 expressed on the precrossing segment of commissural

axons and Robo3.2 on the postcrossing segment. This abrupt

transition helps ensure a high fidelity in the growth cone’s switch

from attraction to repulsion at the midline. The tight spatial local-

ization of splice isoforms of a guidance receptor documented

here thus provides another mechanism for the nervous system

to control intricate guidance events, helping explain the accu-

racy of axon guidance required for proper brain wiring.

RESULTS

Alternative Splicing of the Robo3 Coding Sequence
Generates Two Isoforms
In the course of sequencing a collection of Robo3 full-length

cDNA clones from mouse dorsal spinal cord, we discovered

that the 30 end of the mouse Robo3 mRNA can be alternatively
326 Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc.
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spliced to generate a second isoform that is distinct in its car-

boxy terminus from the previously published cDNA ([Yuan

et al., 1999]; NCBI accession number AF060570; Figure 1A).

We term the new isoform Robo3.1 and the original one

Robo3.2 (based on their expression: see below). The novel

Robo3.1 transcript arises from splicing of exon 26 to exon 27

and then to exon 28 (an analogous splicing event is seen for

the human Robo3 locus [Jen et al., 2004]); the resulting 78

amino acid peptide is highly enriched in arginine/serine dipep-

tide repeats (see Figure S1 available online). The previously de-

scribed Robo3.2 transcript, in contrast, arises from retention of

the intron between exons 26 and 27. The intronic sequence

contains a stop codon and encodes a 43 amino acid peptide

that is quite distinct from the Robo3.1 carboxy terminus but

shows conservation between rodents and humans (Figure 1A

and Figure S1).

Switching of Robo3 Isoform Expression at the Midline
The mRNAs for the two isoforms are both expressed in the

spinal cord during the period of commissural axon growth to

and across the midline, i.e., from embryonic day 9.5 (E9.5) to

12.5 (E12.5) (see below). Immunohistochemistry with isoform-

specific antibodies on spinal cord sections revealed strikingly

distinct localization patterns (Figures 1B–1G and Figures S1

and S2A–S2F; the signals were specific, because they were

absent in the Robo3 mutant, which loses both isoforms [Figures

S2G–S2I]). Robo3.1 is highly expressed on commissural axons

before and during midline crossing (Figure 1C, Figure S2B, and

data not shown). Its expression is rapidly switched off after mid-

line crossing because it was not seen at all in ventral fiber tracts

(Figure 1C and Figure S2B). In contrast, Robo3.2 expression

was detectable only at a low level at E11.5 and increased in ex-

pression at E12.5, and at both ages was seen exclusively on the

portion of commissural axons distal to the midline (Figure 1D

and Figure S2C and Figure 1G and Figure S2F). The expression

patterns of these two isoforms together appear to account to

a considerable extent, and perhaps entirely, for the pattern

we visualized previously using a pan-Robo3 antibody, which

showed high expression before crossing (attributed to

Robo3.1) and expression after crossing that was eventually

downregulated (attributed to Robo3.2) (Sabatier et al., 2004;

Figures 1B and 1E and Figures S2A and S2D). The immunore-

activity in the ventral fiber tracts seen with the pan-Robo3

antibody appeared slightly more extensive than with the

Robo3.2 antibody, suggesting either that there is an additional

Robo3 isoform expressed after crossing or that the pan-Robo3

antibody is more sensitive. Nonetheless, there is a precise

switch in expression on commissural axons from Robo3.1 be-

fore and during midline crossing to Robo3.2 after crossing

(Figure 1H).

Figure 2. Forced Expression of Two Robo3 Isoforms

Causes Distinct Commissural Axon Guidance Pheno-

types

(A) Schematic showing an ‘‘open-book’’ preparation of the spi-

nal cord. D, dorsal; V, ventral.

(B–D) The Robo3 isoforms, together with gfp, were introduced

into chick commissural axons by in ovo electroporation, and

spinal cords were examined in an open-book view. In these

and all the following open-book images, spinal cords were ori-

ented with the ventral midline in the center, transfected neuro-

nal cell bodies sitting to the left (not shown), and the rostral end

of spinal cords pointing up. Brackets represent the span of the

midline. All axons expressing GFP alone (B) appeared normal,

entering and crossing the midline, then turning rostrally. When

Robo3.1 was overexpressed, all axons entered the midline

normally but many then recrossed (green arrows in [C]). Ec-

topic expression of Robo3.2, however, led to some axons

turning away from the midline before entering (red arrows in

[D]). Scale bar, 20 mm.

(E–I) A modified whole-embryo culture (WEC) method was

used to express Robo3 coding sequences. The cultured

mouse embryos (bottom panel of [E], [H], and [I]) were compa-

rable to those that developed normally in vivo (top panel of [E]–

[G]) in their gross morphology, size, and axonal marker ex-

pression after 1 or 2 days in culture (DIC). Scale bar, 100 mm.

(J–M) Rescue of the commissural axon guidance defect seen

in Robo3�/� embryos by exogenous Robo3 proteins. GFP

alone (J) or Robo3.2 (L) did not restore midline crossing in

Robo3�/� embryos. In contrast, many Robo3 mutant axons

were able to project to the contralateral side in embryos trans-

fected with cDNAs for Robo3.1 (K) or Robo1out-Robo3.1in (M).

Scale bar, 100 mm.
Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc. 327
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Robo3 Isoforms Exhibit Opposite Activities
in Commissural Axon Guidance
To functionally characterize the two isoforms, we ectopically

expressed them individually in chick commissural neurons by

in ovo electroporation (see Experimental Procedures). Unlike

the endogenous Robo3 in mice, Robo3 expressed from the

transgene (possessing the b-actin promoter and the b-globin

30UTR) was expressed throughout the length of chick commis-

sural axons (Figures S3A and S3B). When Robo3.1 is persistently

expressed before and after crossing, all GFP-expressing axons

entered the midline normally, but many inappropriately recrossed

(Figure 2C and Figure S6; 13/13 embryos). This result supports

our model (Sabatier et al., 2004) that Robo3—more specifically,

the Robo3.1 isoform—can repress midline repulsion. Remark-

ably, overexpression of Robo3.2 had the opposite effect: many

axons failed to enter the midline and remained on the ipsilateral

side, whereas those that did cross did not recross (Figure 1D

and Figure S6; 14/14 embryos; the same phenotype was also ob-

served with a full-length Robo1 cDNA [data not shown]). These

axons appear to be misrouted commissural axons rather than

ipsilateral projection axons, as the latter assume a longitudinal

trajectory at more dorsal positions, far from the midline.

To further test the activities of the two Robo3 isoforms, we in-

vestigated their abilities to rescue the murine Robo3/Rig1

knockout phenotype by introducing each of them back into

the mutant. This was achieved by electroporating Robo3.1

and Robo3.2 constructs into the spinal cord of embryonic day

9.5 (E9.5) mouse embryos and culturing the embryos in vitro

for 2–3 days, to a developmental stage equivalent to E11.5–

E12.5, using a modification of existing whole-embryo culture

methods (Figures 2E–2I; for detailed description and protocol,

see Experimental Procedures). Plasmids introduced in this

way were expressed in commissural neurons on the electropo-

rated side during the period of growth to and across the midline.

For example, a gfp plasmid introduced into Robo3 mutant em-

bryos revealed the previously described noncrossing phenotype

(Figure 2J). Robo3.1 cDNA could restore midline crossing in the

mutant to a large extent (Figure 2K and Table S1). In contrast, no

axons were seen at the midline or on the contralateral side when

Robo3.2 was introduced back into the mutant (Figure 2L and

Table S1), even though the protein, like Robo3.1, was expressed

precrossing (Figures S3C and S3D). These data together sup-

port the idea that Robo3.1 (but not Robo3.2) can repress prema-

ture repulsion during commissural axon midline crossing.

Further support was obtained by repeating in wild-type mouse

embryos the forced expression experiment that we had per-

formed in chicks, using the mouse whole-embryo culture tech-

nique, with similar results (Figures S4 and S6). We also found

that a chimeric protein comprising the cytoplasmic domain of

Robo3.1 fused to the extracellular and transmembrane regions

of Robo1 (Robo1out-Robo3.1in) was able to rescue midline

crossing when introduced into Robo3 mutants (Figure 2M and

Table S1), thus focusing attention on the cytoplasmic domain

of Robo3.1 in mediating its function.

Requirement of Robo3.1 for Midline Crossing
The expression patterns of Robo3.1 and Robo3.2 and their activ-

ities in forced expression and rescue experiments suggest
328 Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc.
a model in which Robo3.1 expressed on commissural axons be-

fore and during midline crossing serves to suppress Slit repul-

sion, allowing them to enter the midline (Figure 5A), whereas

Robo3.2 expressed on the axons after crossing may contribute

to preventing midline crossing, either by directly mediating Slit

repulsion, by interfering with residual Robo3.1 on the axons, or

by some other means (Figure 5B). To test this model further,

we performed isoform-specific knockdown in vivo using small in-

terfering RNA (siRNA) oligonucleotides in the whole-embryo cul-

ture system. For Robo3.2, we used an siRNA targeting a se-

quence in intron 26, which is not found in Robo3.1 (Figure 3A).

We had less flexibility for Robo3.1 because all sequences in

Robo3.1 are also found in Robo3.2. We reasoned, however,

that an siRNA specifically targeting the junction between exons

26 and 27 might inhibit Robo3.1 expression without affecting

Robo3.2 mRNA (Figure 3A). A positive control was provided by

a pan-Robo3 siRNA targeting a sequence in the common exon

9, and a negative control by introducing five mismatch mutations

into this pan-Robo3 siRNA (Robo3mismatch). In control experi-

ments using transfected COS cells, pan-Robo3 siRNA caused

a complete absence of both isoforms (but did not affect

Robo1, DCC [the netrin receptor], or the surface proteins

TAG-1 and L1 [Figure 3B and data not shown]), whereas

Robo3mismatch had no effect on any of these proteins

(Figure 3B and data not shown). Robo3.1 and Robo3.2 siRNAs

were able to selectively reduce the levels of their respective tar-

gets with no detectable reduction of the other, although the

Robo3.1 siRNA was only partially effective (Figure 3B).

We tested these siRNAs in vivo by electroporating into E9.5

embryos followed by whole-embryo culture. The pan-Robo3

siRNA caused commissural axons to steer away from the mid-

line before entering and to navigate on the ipsilateral side (Fig-

ures 3C and 3G), phenocopying the effect of genetic removal

of Robo3 (Sabatier et al., 2004), whereas the negative control

siRNA (Robo3mismatch) did not cause any detectable phenotype

(Figures 3D and 3G). The Robo3.1-specific siRNA led to the

same midline crossing defect as did pan-Robo3 siRNA, but to

a lesser degree, as a few axons crossed (Figures 3E and 3G);

this partial penetrance may reflect the fact that this siRNA was

not completely effective in suppressing Robo3.1 (Figure 3B). Al-

though Robo3.2 siRNA was able to efficiently knock down

Robo3.2 in COS cells, it did not affect the ability of the axons

to enter and cross the midline (Figures 3F and 3G), consistent

with our model (Figure 5).

Because the transfected axons were intermingled with an ex-

cess of untransfected axons, we could not ascertain by immuno-

histochemistry whether the proteins targeted by the siRNAs

were downregulated, which we expect to be occurring given

the phenotypes. To test the specificity of the siRNA effect, we

therefore performed rescue experiments. The midline crossing

defect seen with the pan-Robo3 siRNA was reversed by coelec-

troporating with a Robo3.1 cDNA mutated in the siRNA target se-

quence such that its transcript is resistant to the siRNA (Figures

S5B and S5E) but not by the wild-type construct whose tran-

script is sensitive (Figures S5A and S5E) nor by a Robo3.2 con-

struct engineered so that its transcript is resistant to the pan-

Robo3 siRNA (Figures S5C and S5E). A construct encoding the

Robo1out-Robo3.1in chimera, which does not contain the
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Figure 3. siRNA-Mediated Knockdown

Implicates Robo3.1 in Allowing Midline

Crossing

(A) Targets of Robo3.1- and Robo3.2-specific siR-

NAs. The Robo3.1 target sequence corresponds

to 10 nt in exon 26 and 9 nt in exon 27 at the

exon-exon junction. The Robo3.2 target sequence

corresponds to 19 nt in intron 26.

(B) siRNA-mediated knockdown of Robo3 iso-

forms in COS-1 cells, assessed by western blot-

ting of COS cell extracts.

(C–F) siRNA-mediated knockdown of Robo3 iso-

forms in commissural neurons. siRNAs were intro-

duced into one-half of the spinal cord by electro-

poration at E9.5, and embryos were cultured

using the whole-embryo culture technique. Pan-

Robo3 siRNA caused premature turning of the

axons (RFP labeled) from the midline (C), whereas

Robo3mismatch-treated axons appeared normal

(D). Robo3.1 siRNA had a similar effect to that of

pan-Robo3, although to a lesser degree (E).

Robo3.2 siRNA treatment did not affect midline

entry of commissural axons (F). Arrows point to

axons that remained abnormally on the ipsilateral side. Boxed areas in (F) indicate regions used for quantification in (G). Scale bar, 100 mm.

(G) Quantification of data in (C)–(F). For each condition, the intensity of RFP expression from the contralateral axons (those that had crossed the midline) was

compared to that from the ipsilateral axons (those that failed to cross). The difference, plotted on the y axis in arbitrary units, is shown as mean ± SEM.
pan-Robo3 siRNA target sequence, was also able to rescue the

RNAi effect (Figures S5D and S5E), as predicted.

These results indicate that siRNA-mediated knockdown of

Robo3 in vivo was efficient and specific and that Robo3.1 ap-

pears to account for most or all of the Robo3 activity that is

necessary for inhibiting premature repulsion from the midline.

Robo3.2 Helps Expel Postcrossing Commissural Axons
Given its expression pattern and overexpression phenotype, we

considered the possibility that Robo3.2 contributes to repelling

commissural axons out of the midline. Previous studies had, in

fact, suggested that Robo1 and Robo2 may not account fully

for the repulsion of postcrossing commissural axons by Slits, be-

cause only a small fraction of axons stalls within the midline in

Robo1 or Robo2 single mutants, whereas more extensive stall-

ing was seen in Slit1;Slit2;Slit3 triple mutants (lacking all midline

Slits) (Long et al., 2004). We generated a double mutant lacking

both Robo1 and Robo2 (which are linked on chromosome 16;

see Experimental Procedures) but found that the amount of stall-

ing in the double mutants (Figures 4B and 4E and data now

shown) was that expected from additive effects of removing

Robo1 and Robo2 and still considerably less than in the Slit triple

mutant (Long et al., 2004). Despite this, when we bred the

Robo1;Robo2 double mutant to the Robo3 mutant, the failure

of midline crossing seen in the Robo3 mutant (Figure 4C) was

rescued to a considerable extent (Figure 4D), supporting the

model that the low levels of Robo1 and Robo2 on precrossing

axons contribute significantly to mediating the premature repul-

sion by Slits in the Robo3 mutant.

The modest stalling phenotype of the Robo1;Robo2 double

mutant compared to the Slit1;Slit2;Slit3 triple mutant supports

the existence of another Slit receptor(s) that mediates midline re-

pulsion. We therefore tested the possibility that Robo3.2 collab-

orates with Robo1 and Robo2 in this function. To knock down
Robo3.2 without affecting Robo3.1 expression, we carried out

RNAi against Robo3.2 in the Robo1;Robo2 double mutant em-

bryos (which were electroporated at E9.5 and cultured for 3

days). In these embryos, some axons were seen to recross the

midline (Figure 4G and Figure S6, phenotype seen consistently

in 4/5 embryos examined); this phenotype was not seen with

the Robo3mismatch siRNA (Figure 4F and Figure S6, 6 embryos

studied). No recrossing was observed, either, when the

Robo3.2 siRNA was electroporated into wild-type embryos, in

which Robo1 and Robo2 function were intact (data not shown).

The recrossing phenotype was also observed in some axons in

the triple Robo mutant (Figures 4D and 4E) and in the triple Slit

mutant (Long et al., 2004). Taken together, these results support

the model that Robo3.2 contributes to expelling axons from the

midline in collaboration with Robo1 and Robo2.

DISCUSSION

Alternative splicing plays an important role in regulating many

processes in neural development, including cell fate determina-

tion, neuronal recognition, and synaptogenesis (Li et al., 2007),

and defects in splicing are being increasingly implicated in vari-

ous neurological disorders (Licatalosi and Darnell, 2006). Our re-

sults indicate that alternative splicing of axon guidance recep-

tors provides a level of sophisticated regulation that can be

utilized to ensure the fidelity of growth cone switching from

attraction to repulsion at intermediate targets.

Distinct Spatial Localization of Opponent
Splice Isoforms
We found that alternative splicing gives rise to Robo3 isoforms

with opposite functions. Robo3.1 favors midline crossing, and

genetic analysis (Sabatier et al., 2004 and this study) indicates

that it does so by suppressing Slit repulsion mediated by
Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc. 329
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Robo1 and Robo2. In contrast, Robo3.2 blocks midline crossing

(in gain-of-function experiments) and normally collaborates with

Robo1 and Robo2 to block midline recrossing (as shown in loss-

of-function experiments), thus favoring Slit repulsion (Figure 5). It

Figure 4. Robo3.2 Also Contributes to Commissural Axon Guidance

(A–D) DiI tracing of commissural axons in compound Robo spinal cords

(shown in an ‘‘open-book’’ view). In Robo1+/�;Robo2+/�;Robo3+/� embryos

(A), which served as controls, virtually all commissural axons crossed the mid-

line. In Robo1�/�;Robo2�/�;Robo3+/� mutants (B), a few axons stalled within

the midline (quantified in [E]; note that in [B] the stalling was best seen by fo-

cusing up and down and that the stalled profiles are not readily seen in the sin-

gle plane of focus that is displayed). In Robo1+/�;Robo2+/�;Robo3�/� mutant

spinal cords (C), no axons were seen within the midline or on the contralateral

side. However, when all six Robo alleles were mutant, many axons were able to

enter the midline (D), though many failed to exit (E) and some recrossed the

midline ([E], indicated with arrow in [D]).

(E) Quantification of phenotypes in (A)–(D).

(F and G) In Robo1;Robo2 double mutants, electroporation of the Robo3.2

siRNA caused some commissural axons (GFP labeled) to recross the midline

(indicated with arrows in [G]), whereas the control siRNA, Robo3mismatch, had

no effect (F). Scale bar, 20 mm.
330 Neuron 58, 325–332, May 8, 2008 ª2008 Elsevier Inc.
remains to be determined whether Robo3.2 produces its effect

by functioning directly as a repellent Slit receptor or by some

other means (e.g., blocking residual Robo3.1 on postcrossing

axons, or potentiating Robo1 or -2 function). Importantly, our re-

sults also demonstrate a remarkable and unexpectedly tight

level of spatial localization of the two splice isoforms, with

Robo3.1 expressed precrossing and Robo3.2 postcrossing,

consistent with their functional roles in enabling midline crossing

and blocking midline recrossing, respectively.

These findings extend to midline guidance themes highlighted

in previous studies of alternative splicing in the nervous system.

Several other neuronal genes have been documented to un-

dergo regulated splicing to produce functionally distinct iso-

forms. For example, two splice variants of the EphA7 receptor,

which differ in their C termini, exhibit distinct activities in regulat-

ing cell adhesion during neural tube closure (Holmberg et al.,

2000). Alternative splicing to yield isoforms with distinctive sub-

cellular localization properties has also been documented. For

example, alternative splicing of the NR1 subunit of NMDA recep-

tors generates two isoforms with distinct carboxy termini that ac-

cumulate differentially at the synapse in an activity-dependent

manner (Mu et al., 2003). The splicing of the potassium channel

Kv3.1 pre-mRNA gives rise to two isoforms, with Kv3.1a promi-

nently expressed in axons within certain neuronal populations

and Kv3.1b mostly expressed in the soma and dendrites of these

neurons (Ozaita et al., 2002). It will be of interest to examine

whether discrete spatial localization of splice isoforms contrib-

utes to the function of other axon guidance receptors implicated

in switching from attraction to repulsion at intermediate targets.

Regulation of Expression of the Robo3 Splice Isoforms
It is intriguing to consider how the two Robo3 isoforms are con-

fined to appropriate axonal segments. The simplest mechanism

would be for there to be a temporal switch in splicing, with the

Figure 5. Model of Robo3 Activities in Commissural Axon Guidance

at the Midline

(A) Before axons reach the midline, Robo3.1 is highly expressed on axons, and

its activity prevents the activation of Robo1 and Robo2, present at low levels

on the axons. As a result, axons are unresponsive to Slit repellents and thus

enter the midline.

(B) Upon entry, a switch in Robo3 expression occurs: Robo3.2 expression is

switched on, but the protein is restricted to axonal regions distal to the midline,

where Robo3.1 is excluded. Consequently, Robo1, Robo2, and Robo3.2 act in

concert to help expel axons to the contralateral side.
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Robo3.1 transcript made first, followed at an appropriate time by

the Robo3.2 transcript. However, by quantitative RT-PCR, we

found a roughly constant ratio of the two transcripts in the spinal

cord during the period of commissural axon growth to and

across the midline (Figure S7A). In situ hybridization studies sim-

ilarly suggest that the two transcripts appear in parallel in com-

missural neurons (Figure S7B–S7K), arguing against a temporal

switch.

Alternative mechanisms to a temporal switch include one or

more of the following: (1) constitutive translation of the two tran-

scripts followed by selective trafficking to (or removal from) the

two axon segments, (2) a temporal switch in translation of the

two transcripts in the cell bodies (with Robo3.1 translated while

the axon is extending to the midline and Robo3.2 after it has

crossed), (3) transport of the transcripts into axons followed by

selective translation of Robo3.1 in the precrossing axon segment

and Robo3.2 in the postcrossing segment. As a variation on the

third possibility, the Robo3.2 transcript could be transported

down the axons but spliced selectively in the precrossing portion

to yield Robo3.1, followed by local translation (this mechanism

would require splicing within the axons, which has not so far

been demonstrated). At present, we cannot distinguish fully be-

tween these mechanisms, although the absence of detectable

transcripts in the axons (Figures S7B–S7K) tends to argue

against models involving local translation.

Additional Splicing Events
Previous studies have suggested the existence of other splice

variants of Robos and Slits (Challa et al., 2005; Clark et al.,

2002; Dalkic et al., 2006; Little et al., 2002; Tanno et al., 2004),

raising the possibility that alternative splicing might be widely in-

volved in regulating Slit/Robo signaling. Additional splicing

events in the Robo3 pre-mRNA have been previously described

(Camurri et al., 2005; Yuan et al., 1999), but their functional con-

sequences are largely undefined. One particularly interesting

splicing event in the Robo3 50 coding sequence has been shown

to generate two different amino termini (the Robo3A and Robo3B

isoforms) with distinct Slit-binding activities (Camurri et al.,

2005). Our immunolocalization and loss-of-function experiments

did not distinguish between A and B isoforms. In the gain-of-

function and rescue experiments, the cDNAs we used encoded

the A isoforms, which, strictly speaking, should be referred to as

Robo3A.1 and Robo3A.2. The finding in human patients with the

HGPPS syndrome of a familial missense mutation in the signal

sequence of Robo3A (Jen et al., 2004) supports the functional

importance of the Robo3A isoforms in both mice and humans.

The relative contributions of A and B isoforms remain to be

defined.

Contribution of Slit/Robo Signaling to Leaving
the Midline and Mechanism of Action of Robo3
Our results, particularly using the newly derived Robo1;Robo2

double knockout, also help flesh out the specific contribution

of Slit/Robo signaling to entering and leaving the midline. As

we have shown, removal of Robo3.1, either by gene knockout

or by siRNA knockdown, prevents midline crossing. The finding

in the triple Robo knockout that removal of both Robo1 and

Robo2 can largely reverse the inability of commissural axons
to enter the midline in the Robo3 knockout, supports the theory

that Robo3.1 functions to suppress Slit repulsion mediated by

low levels of Robo1 and Robo2. After midline crossing,

Robo3.2 collaborates with Robo1 and Robo2 to prevent midline

recrossing. Our results (Figure 4) also suggest, however, that

these three Robos do not account fully for midline repulsion

and that additional Slit receptor(s) and distinct repulsive signal-

ing pathways may collaborate with them to mediate expulsion

from the midline; indeed, there is already evidence for a contribu-

tion from semaphorin3B/neuropilin-2 and ephrin/Eph signaling

(Kadison et al., 2006; Zou et al., 2000).

The molecular basis for the divergent actions of the two Robo3

isoforms also remains to be elucidated. Robo3.1 could interfere

with Robo1 and Robo2 function through direct physical interac-

tion. However, we have not been able to detect such an interac-

tion in transfected COS cells expressing Robo3.1 with either

Robo1 or Robo2, whether or not Slit2 protein is added (data

not shown). Alternatively, Robo3.1 may interfere with Robo1

and Robo2 signaling further downstream in the signaling path-

way. Thus, further studies will be required to fully define the com-

plement of receptors and signaling pathways that expel commis-

sural axons from the midline.

EXPERIMENTAL PROCEDURES

See the Supplemental Data available online.

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/58/3/325/DC1/.
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